
Performance analysis
CSC5001 – Systèmes Hautes Performances

2

Summary

● Why / when to analyze performances ?
● How to evaluate the performances of an application ?
● Tools for performance analysis

3

Why/when to analyze performance ?
● Why ?

● In order to reduce the application execution time and/or memory consumption
● Supercomputers are expensive to operate

● Before buying a more powerful one you’d better use the current one efficiently
● To solve a problem in a reasonnable amount of time

● When ?
● Once the application works

4

Why NOT to optimize performance ?

‘’Premature optimization is the root of all evil’’ – Knuth, D. E. The art of computer programming

● Drawbacks of optimizing applications
● It consumes lots of developper time

● Should I spend 6 month optimizing an application in order to improve its completion
time by 3 % ?

● The source code becomes hard to maintain
● The optimization targets one hardware platform

● It may degrade performance on other platforms

5

How to evaluate the performance ?

6

Algorithm complexity
● Parallel complexity depends on

– N: the problem size
– P: the number of processors

● Estimate the asymptotic complexity of the algorithm
– If N >> P, improving the algorithm is more important than improving the parallelization
– eg O(N² / P) > O(N log (N) / ½P)

● Beware of the hidden constant
– If N is small, O(N²) ~= O(N log(N))

7

Measuring the application scalability

● Find a performance metric that suits the application
– Application whole execution time
– Application run time (without the initialization)
– Throughput / response time

● Fairly compare the sequential and parallel codes
– Compare source codes with similar level of optimization
– "On the Limits of GPU Acceleration", Richard Vuduc et al. HotPar 2010

Example of (possible) unfair comparison:
Comparing a matlab implementation with a highly tuned

CUDA implementation

Accelerating leukocyte tracking using CUDA: A case
study in leveraging manycore coprocessors. In IPDPS 2009

8

Strong scaling vs weak scaling

● Strong scaling study
– Study how performance scales for a fixed problem size
– How to solve problems faster ?
– Ultimately, the computation becomes too small, and

performance degrades

● Weak scaling study
– Study how performance scales with a constant problem

size per processor
– How to solve bigger problems ?

…

…

9

Sources of performance issues

● Problem size is too small
– cf. strong scaling study

● The application lacks parallelism
– eg. only a part of the application is parallel, workload imbalance, ...

● Bottleneck on a shared resource
– eg. IO on a disk, concurrent access to the network, shared lock, …

● Bad memory usage
– eg. lots of cache misses, memory accesses on remote NUMA nodes, false sharing, …

● ...

10

Tools for performance analysis

11

Very coarse grain performance analysis
time

● Outputs timing statistics for executing a command.
– Real : time difference between the start date and the end date
– User : total CPU time consumed by thread in user space
– Sys : total CPU time consumed by thread in kernel space

● Can be used for :
– Computing speedup
– Detecting I/O intensive applications (if sys is high)
– Detecting a lack of parallelism (user should be roughly real*nprocs)

$ time ./bin/dc.W.x
…
real 0m9,745s
user 0m31,930s
sys 0m3,509s

12

Coarse grain performance analysis
Profiling tools (eg perf)

● Show which functions takes most of the CPU time
● Collecting samples

– Use the CPU sampling mechanism to know which instruction
is being executed

– Can record the callgraph (see -g)

● Many other cpu profilers exist
– gprof, oprofile, valgrind, ...

$ perf record ./bin/dc.W.x
…
[perf record: Woken up 21 times to write data]
[perf record: Captured and wrote 5,637 MB perf.data (147114 samples)]

$ perf report

13

Coarse grain performance analysis
Performance counters (eg perf stat)

● Performance counters are collected during the execution
– Hardware events (eg branch-misses, cpu-cycle, …)

– Software events (eg context-switches, page-faults, …)

– Low level counters (eg LLC-load-misses, power/energy-pkg/, …)

→ see perf list

perf stat -e c1,c2,c3,... cmd

$ perf stat ./bin/dc.W.x
…

14

Fine grain performance analysis
clock_gettime

● Manual timing of parts of the code
– Precise timing/variation measurement

● Need a clock
– Gettimeofday()

● Precision : 1µs, overhead : 20 ns
– clock_gettime()

● Precision : 1 ns, overhead : 10-200 ns
– RDTSC assembly instruction

● Precision : 1 cycle, overhead : 6-7 ns
– Logical clock (eg. _Atomic int clock=0;)

15

Fine grain performance analysis
tracing tools

● Dynamic representation of the program behavior
● Execution trace :

– Timestamped list of events

16

Fine grain performance analysis
visualizing execution traces

● Graphical representation of the application behavior

17

Fine grain performance analysis
tracing tools : EZTrace

● List the available modules
– eztrace_avail

● Collecting events
– eztrace or eztrace.preload
– Generates an OTF2 trace file (<PROGRAM>_trace/eztrace_log.otf2)

● Visualizing the trace

$ eztrace_avail
3 stdio Module for stdio functions (read, write, select, poll, etc.)
2 pthread Module for PThread synchronization functions (mutex, semaphore, spinlock, etc.)
6 papi Module for PAPI Performance counters
1 omp Module for OpenMP parallel regions
4 mpi Module for MPI functions
5 memory Module for memory functions (malloc, free, etc.)
7 cuda Module for cuda functions (cuMemAlloc, cuMemcopy, etc.)

$ eztrace -t ''module1 module2'' ./mon_programme
$ mpirun -np 2 eztrace -t ''module1 module2'' ./mon_programme

$ vite program_trace/eztrace_log.otf2

$ otf2-print program_trace/eztrace_log.otf2

18

Fine grain performance analysis
EZTrace internals

● Functions instrumentation
– Uses LD_PRELOAD to intercept calls to a set of functions

● Recording events
– Events are stored in thread-local buffers at runtime
– Buffers are flushed at the end or when full

● Caveats
– openmp plugin: need to recompile the application with eztrace_cc :

$ eztrace_cc gcc -o my_app my_app.c -fopenmp

– ompt plugin: only works with OpenMP implementation that implement the OMPT interface (eg. clang)
– Online tutorials: https://gitlab.com/eztrace/eztrace-tutorials/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

