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Objectives

● What is the potential performance gain if I parallelize an application ?

● What is the cost of a network communication ?

● How to distribute data ?

● How to balance the workload ?
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Parallel architectures

● Within a processor
● Core, hyper-threading, superscalar CPU, vectorization

● Within a machine
● SMP (Symmetric Multi Processor), NUMA (Non-Uniform 

Memory Architecture)

● Within a data center
● Cluster of compute nodes
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Programming models
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Shared memory models

● Each task can access all the data
● Parallelization by distributing processing
● Bottleneck: inter-task synchronization (eg. Lock)
● Examples of shared memory models

– OpenMP, Pthread, Intel TBB
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Distributed memory models

● Each task access its own data
● Parallelization by distributing data and processing
● ‘’Owner computer’’:  Each task compute the data it owns
● Bottleneck: inter-task communication (eg. network 

communication)
● Example of distributed memory models

– MPI
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Hybrid models

● Distributed memory model to distribute processing on several 
nodes

● Shared memory models within a node

● Take advantage of the cluster topology
– 1 MPI process per NUMA node + OpenMP threads
– 1 MPI process per machine + CUDA
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Flynn taxonomy

● Classification of computer architectures
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program

Multiple programs
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(sequential 
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Multiple data SIMD
(GPU, vector CPU)
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(multicore, cluster)
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(MPI)
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What is the potential performance 
gain if I parallelize an application ?
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Theory of parallelism

● Parallelization
– Use several processors to compute faster
– Usually, only a part s of the program run in parallel
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Measuring parallel performance

● Parallel performance metrics
– Speedup: evolution of the execution time as the number of 

processors p increases
● Sp = Ts/Tp

– Ts: execution time of the best sequential algorithm

– Tp: execution time of the parallel algorithm running on p processors

– Parallel efficiency: evolution of the speedup as the number of 
processors p increases

● Ep = Sp/p 
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Amdahl’s law

● Theoretical maximum speedup
● s = part of the program that is parallel

● 1-s = part of the program that is sequential

● r = 1 / (1-s) + (s/p)
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Speedup plots

● Several classes of speedup exist
– Ideal : Tp = Ts/p

– Linear: Sp = α.Si (α<1)

– Asymptotic: Sp < β

– Superlinear: Sp > Si

● Because of the architecture (eg. cache effects)
● Because of the algorithme (eg. search algorithm)
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Parallel efficiency

● Efficiency: E= S/p
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What is the cost of a network 
communication ? 
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Network topologies

● How to connect N machines with 4-ports switches ? 
– Tree of switches
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Network topologies

● How to connect N machines with 4-ports switches ? 
– Tree of switches
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Fat tree

● How to connect N machines with 4-ports switches ? 
– Fat Tree
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Other topologies

● Goal:
– Minimize the number of hops (~latency)
– Maximize throughput
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Communication models

● Hypothesis
– Communication cost (almost) constant for each pair of nodes
– 1-port communication model
– Full-duplex links

● Communication cost for a m-bytes word: ts + m Tw

– ts: startup time

– tw: transfer time per word
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Point to point communications

● Blocking communications

– The sending thread blocks until the buffer can be 
modified

● After the data is copied to another buffer,
● Or after the end of the data transmission

● Non-blocking communcations

– The sending thread does not block while sending

– The buffer can be modified after checking for the end of 
the data transfer

– != asynchronous communication
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Collective communications

● Communication operation that involve a set of 
nodes

● Example: 1-to-n broadcast
– A root process broadcasts a m-bytes messages to 

the others
– Naive algorithm:

● The root process send the message to the other 
processes one by one

● n-1 steps
● Execution time:  (n-1) . (ts + tw.m)
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Collective communications

● Communication operation that involve a set of 
nodes

● Example: 1-to-n broadcast
– A root process broadcasts a m-bytes messages to 

the others
– Other algorithms:

● log n step
● The optimal algorithm depend on the network 

topology
● Execution time: log n . (ts + tw.m)
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Exercise: all-to-all

● All-to-all broadcast
– Every process broadcasts a m-bytes messages to the other 

processes of the group

● Exercise:
– Write the all-to-all algorithm in pseudo-code

void all_to_all(int my_rank, message m, int m_size) {

}

– Compute its execution time
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Exercise : all-to-all
Solution

void all_to_all(int my_rank, message m, int m_size) {
  for(int i=0; i<log(n); i++) {
    int offset = 1<<i;
    int direction = my_rank & offset;
    int dest;

    if(direction == 0) {
      dest = my_rank + offset;
    } else {
      dest = my_rank - offset;
    }
    send(m, m_size, dest);
    recv(&m[m_size], m_size, dest);
    m_size *=2;
  }
}
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Other collective communications

● Broadcast

● Scatter

● Gather

● Reduce



Other collective communications
all-to-all

● 1 to n broadcast

● n to n broadcast (AllToAll)



Other collective communications 
all-to-all gather

● N to 1 gather

● n to n gather (AllGather)



Other collective communications 
all-to-all reduction

● n to 1 reduction (Reduce)

● n to n reduction (AllReduce)
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How to distribute data ?
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Data parallelism

● Parallelization based on data distribution
– Owner computes

● A buffer can be distributed in several ways
– A bad data distribution may generate spurious data transfers
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Distributing dense arrays

● Distributing a 1D array
– block, cyclic, or block-cyclic distribution
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Distributing dense arrays

● Distributing a 2D array
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Exercise

● Multiplying NxN matrices
– A x B = C
– How to distribute matrices other 4 processes ? 
– Compute the memory footprint of matrices for each process
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Exercise
Naive solution

● Memory footprint

→ memory scaling problem
● Communication : 0
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Exercise
Other solutions

● Memory footprint

● Communication:               phases

● Several algorithms exist: Cannon, Fox, Snyder
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Task parallelism

● Decompose a program as a Direct Acyclic Graph (DAG) of 
tasks
– Nodes = tasks (functions)
– Edges = data dependencies

● Example: Choleski factorization
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Data parallelism vs Task parallelism

● Choleski parallellized with

 #pragma omp parallel for

● Choleski parallelized with tasks
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How to balance the workload ?
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Load balancing

● Goal of parallelism: reducing the execution time

~ each thread has the same execution time

 →  Load balancing
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Load balancing

● 3 levels of difficulty:
– Easy: n homogeneous jobs

– Hard: n heterogeneous jobs

– Harder: the cost of jobs is unknown

N jobs

Stencils, dense 
matrices, etc.

4 CPUs

N jobs
4 CPUs

Sparse MxV, etc.

Searching, etc.
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Static scheduling

● Static distribution of the workload
– Equally split the data and distribute it
– No communication at runtime
– Example with OpenMP: schedule(static)

● Efficient for homogeneous cases
● Not efficient if

– CPUs are heterogeneous
– The workload is irregular
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Dynamic data distribution
example: searching in a graph

● Searching for a value in a graph/tree
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Dynamic data distribution
example: searching in a graph

● Static distribution
– Each new node is assigned to an idle CPU

Load balancing with 2 threads Load balancing with 4 threads
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Tasks queues
Master/slave scheme

● A list of task to be executed
– Managed by a master thread
– Or in a protected data structure

● ex: schedule(dynamic) d’OpenMP

● Problems
– Task granularity

● Many small tasks → contention
● Few large tasks → load inbalance

– No data locality
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Multiple tasks queues
Work stealing

● One list of tasks per thread
– Maintain data locality
– Little contention
– When a local task queue is empty : work stealing

● Who’s the victim ?
● Should I steal a large tasks ? 

 → Deque (Double-ended queue)
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7 dwarfs of HPC

A dwarf is an algorithmic method that captures a pattern of computation and 
communication. 

● Dense Linear Algebra

● Sparse Linear Algebra

● Spectral Methods

● N-Body Methods

● Structured Grids

● Unstructured Grids

● MapReduce

Complete list: Asanovic, Krste, et al. "The landscape of parallel computing 
research: A view from berkeley." (2006)
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Exercise: Mandelbrot

● mandelbrot_seq.c computes the Mandelbrot set
– For each pixel, a computation is required

– The number of iteration of this computation results in a color
● White ↔  lots of computation
● Black ↔ little computation

● Measure the application current speedup
● Modify the application to improve load balancing

– Dynamically

– Statically
● Measure the modified application speedup
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