
Parallel Algorithmic
CSC5001 – Systèmes Hautes Performances

2

Objectives

● What is the potential performance gain if I parallelize an application ?

● What is the cost of a network communication ?

● How to distribute data ?

● How to balance the workload ?

3

Parallel architectures

● Within a processor
● Core, hyper-threading, superscalar CPU, vectorization

● Within a machine
● SMP (Symmetric Multi Processor), NUMA (Non-Uniform

Memory Architecture)

● Within a data center
● Cluster of compute nodes

4

Programming models

5

Shared memory models

● Each task can access all the data
● Parallelization by distributing processing
● Bottleneck: inter-task synchronization (eg. Lock)
● Examples of shared memory models

– OpenMP, Pthread, Intel TBB

6

Distributed memory models

● Each task access its own data
● Parallelization by distributing data and processing
● ‘’Owner computer’’: Each task compute the data it owns
● Bottleneck: inter-task communication (eg. network

communication)
● Example of distributed memory models

– MPI

7

Hybrid models

● Distributed memory model to distribute processing on several
nodes

● Shared memory models within a node

● Take advantage of the cluster topology
– 1 MPI process per NUMA node + OpenMP threads
– 1 MPI process per machine + CUDA

8

Flynn taxonomy

● Classification of computer architectures

Single instruction Multiple
instruction

Single
program

Multiple programs

Single data SISD
(sequential
processorl)

MISD
(aircrafts)

Multiple data SIMD
(GPU, vector CPU)

MIMD
(multicore, cluster)

SPMD
(MPI)

MPMD
(Cell/BE, CPU+GPU)

9

What is the potential performance
gain if I parallelize an application ?

10

Theory of parallelism

● Parallelization
– Use several processors to compute faster
– Usually, only a part s of the program run in parallel

11

Measuring parallel performance

● Parallel performance metrics
– Speedup: evolution of the execution time as the number of

processors p increases
● Sp = Ts/Tp

– Ts: execution time of the best sequential algorithm

– Tp: execution time of the parallel algorithm running on p processors

– Parallel efficiency: evolution of the speedup as the number of
processors p increases

● Ep = Sp/p

12

Amdahl’s law

● Theoretical maximum speedup
● s = part of the program that is parallel

● 1-s = part of the program that is sequential

● r = 1 / (1-s) + (s/p)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6
0

2

4

6

8

10

12

14

16

18

20

50%

75%

90%

95%

Number of processors

S
p

ee
d

u
p

13

Speedup plots

● Several classes of speedup exist
– Ideal : Tp = Ts/p

– Linear: Sp = α.Si (α<1)

– Asymptotic: Sp < β

– Superlinear: Sp > Si

● Because of the architecture (eg. cache effects)
● Because of the algorithme (eg. search algorithm)

0 5 10 15 20 25 30
0

5

10

15

20

25

30
Ideal

Linear

Asymptotic

Superlinear

Number of processors

S
p

ee
d

u
p

14

Parallel efficiency

● Efficiency: E= S/p

0 20 40 60 80 100 120 140
0

0,2

0,4

0,6

0,8

1

1,2

Ideal

Linear

Asymptotic

Number of processors

E
ff

ic
ie

n
cy

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Ideal

Linear

Asymptotic

Number of processors

S
p

ee
d

u
p

15

What is the cost of a network
communication ?

16

Network topologies

● How to connect N machines with 4-ports switches ?
– Tree of switches

17

Network topologies

● How to connect N machines with 4-ports switches ?
– Tree of switches

18

Fat tree

● How to connect N machines with 4-ports switches ?
– Fat Tree

19

Other topologies

● Goal:
– Minimize the number of hops (~latency)
– Maximize throughput

Tore 2D Tore 3D

00 0
0
0
011

22

33

44

55

66

77

00

11

22

33

44

55

66

77

0
1
0
1

0
2
0
2

0
3
0
3

1
0
1
0

1
1
1
1

1
2
1
2

1
3
1
3

2
0
2
0

2
1
2
1

2
2
2
2

2
3
2
3

0 1 0

Butterfly

20

Communication models

● Hypothesis
– Communication cost (almost) constant for each pair of nodes
– 1-port communication model
– Full-duplex links

● Communication cost for a m-bytes word: ts + m Tw

– ts: startup time

– tw: transfer time per word

21

Point to point communications

● Blocking communications

– The sending thread blocks until the buffer can be
modified

● After the data is copied to another buffer,
● Or after the end of the data transmission

● Non-blocking communcations

– The sending thread does not block while sending

– The buffer can be modified after checking for the end of
the data transfer

– != asynchronous communication

22

Collective communications

● Communication operation that involve a set of
nodes

● Example: 1-to-n broadcast
– A root process broadcasts a m-bytes messages to

the others
– Naive algorithm:

● The root process send the message to the other
processes one by one

● n-1 steps
● Execution time: (n-1) . (ts + tw.m)

23

Collective communications

● Communication operation that involve a set of
nodes

● Example: 1-to-n broadcast
– A root process broadcasts a m-bytes messages to

the others
– Other algorithms:

● log n step
● The optimal algorithm depend on the network

topology
● Execution time: log n . (ts + tw.m)

24

Exercise: all-to-all

● All-to-all broadcast
– Every process broadcasts a m-bytes messages to the other

processes of the group

● Exercise:
– Write the all-to-all algorithm in pseudo-code

void all_to_all(int my_rank, message m, int m_size) {

}

– Compute its execution time

25

Exercise : all-to-all
Solution

void all_to_all(int my_rank, message m, int m_size) {
 for(int i=0; i<log(n); i++) {
 int offset = 1<<i;
 int direction = my_rank & offset;
 int dest;

 if(direction == 0) {
 dest = my_rank + offset;
 } else {
 dest = my_rank - offset;
 }
 send(m, m_size, dest);
 recv(&m[m_size], m_size, dest);
 m_size *=2;
 }
}

)1(log)2(
1log

0






nmtntmtt ws

n

i
w

i
s

Execution time:

26

Other collective communications

● Broadcast

● Scatter

● Gather

● Reduce

Other collective communications
all-to-all

● 1 to n broadcast

● n to n broadcast (AllToAll)

Other collective communications
all-to-all gather

● N to 1 gather

● n to n gather (AllGather)

Other collective communications
all-to-all reduction

● n to 1 reduction (Reduce)

● n to n reduction (AllReduce)

30

How to distribute data ?

31

Data parallelism

● Parallelization based on data distribution
– Owner computes

● A buffer can be distributed in several ways
– A bad data distribution may generate spurious data transfers

32

Distributing dense arrays

● Distributing a 1D array
– block, cyclic, or block-cyclic distribution

33

Distributing dense arrays

● Distributing a 2D array

34

Exercise

● Multiplying NxN matrices
– A x B = C
– How to distribute matrices other 4 processes ?
– Compute the memory footprint of matrices for each process

35

Exercise
Naive solution

● Memory footprint

→ memory scaling problem
● Communication : 0

2

..2 











p

N

p

N
N

36

Exercise
Other solutions

● Memory footprint

● Communication: phases

● Several algorithms exist: Cannon, Fox, Snyder

2

.3 










p

N

p

37

Task parallelism

● Decompose a program as a Direct Acyclic Graph (DAG) of
tasks
– Nodes = tasks (functions)
– Edges = data dependencies

● Example: Choleski factorization

38

Data parallelism vs Task parallelism

● Choleski parallellized with

 #pragma omp parallel for

● Choleski parallelized with tasks

39

How to balance the workload ?

40

Load balancing

● Goal of parallelism: reducing the execution time

~ each thread has the same execution time

 → Load balancing

41

Load balancing

● 3 levels of difficulty:
– Easy: n homogeneous jobs

– Hard: n heterogeneous jobs

– Harder: the cost of jobs is unknown

N jobs

Stencils, dense
matrices, etc.

4 CPUs

N jobs
4 CPUs

Sparse MxV, etc.

Searching, etc.

42

Static scheduling

● Static distribution of the workload
– Equally split the data and distribute it
– No communication at runtime
– Example with OpenMP: schedule(static)

● Efficient for homogeneous cases
● Not efficient if

– CPUs are heterogeneous
– The workload is irregular

43

Dynamic data distribution
example: searching in a graph

● Searching for a value in a graph/tree

44

Dynamic data distribution
example: searching in a graph

● Static distribution
– Each new node is assigned to an idle CPU

Load balancing with 2 threads Load balancing with 4 threads

45

Tasks queues
Master/slave scheme

● A list of task to be executed
– Managed by a master thread
– Or in a protected data structure

● ex: schedule(dynamic) d’OpenMP

● Problems
– Task granularity

● Many small tasks → contention
● Few large tasks → load inbalance

– No data locality

46

Multiple tasks queues
Work stealing

● One list of tasks per thread
– Maintain data locality
– Little contention
– When a local task queue is empty : work stealing

● Who’s the victim ?
● Should I steal a large tasks ?

 → Deque (Double-ended queue)

47

7 dwarfs of HPC

A dwarf is an algorithmic method that captures a pattern of computation and
communication.

● Dense Linear Algebra

● Sparse Linear Algebra

● Spectral Methods

● N-Body Methods

● Structured Grids

● Unstructured Grids

● MapReduce

Complete list: Asanovic, Krste, et al. "The landscape of parallel computing
research: A view from berkeley." (2006)

48

Exercise: Mandelbrot

● mandelbrot_seq.c computes the Mandelbrot set
– For each pixel, a computation is required

– The number of iteration of this computation results in a color
● White ↔ lots of computation
● Black ↔ little computation

● Measure the application current speedup
● Modify the application to improve load balancing

– Dynamically

– Statically
● Measure the modified application speedup

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48

