SudParis
et i

N2 1P PARIS

A Survey of
Rollback-Recovery

Protocols in
Message-Passing Systems

E.N. Elnozahy, L. Alivisi, Y.-M. Wang, and D.B.
Johnson

Presented by Denis Conan

Nl Outline

. Context: Fault-tolerance of long-running applications
. Background and Problem Definition

. Approach 1: Checkpoint-based rollback-recovery

. Approach 2: Log-based rollback-recovery

. Conclusion

Gl w NN =

e 21

I 1 Context: Fault-tolerance of long-running appli-

cations
B Long-running HPC! applications for: environment, climate, new energies,
health, biology, transport, geophysics, astrophysics, plasma physics, laser
physics, human and social sciences

B Too many processes to replicate (active replication),
then fault-tolerance through passive replication
® Save recovery information periodically during failure-free execution
Processes’ states into what are called checkpoints
Messages of the interactions into logs
® In case of a crash, recover from an intermediate state by rollbacking

1. High Performance Computing (See Module CSC5001)

N > Background and Problem Definition

2.1 System Model and Correctness Condition
2.2 Communication with the Outside World
2.3 In-transit messages, determinant, logging, orphan message

I - 1 System Model and Correctness Condition

B Processes communicate by exchanging messages

B No partitioning, reliable network, but all processes may fail simultaneously

B Fail-stop model: Failures are correctly detected |

o
B The piece-wise deterministic assumption: computg | i i
average | I| | |
Toafidata ! !
® Process execution = sequence of state intervals, catley|data ! !
T A_Q# |
each started by a nondeterministic event ! P — sl
n . e e . . nmn“f ’=ﬂcompuiverage ;
Process execution = deterministic in state intervals i i omouk bveraa
I I EL
I I I
. . | | |
B Generic correctness condition for rollback-recovery: ! ! L
I =1 I
| | |
® A system recovers correctly fﬁ 1 i
if its internal state is consistent ! !
with the observable behaviour i i
of the system before the failure L] H

N - - Communication with the Outside World

B Nondeterministic events (e.g. timeouts) can be modelled as input messages

® Remember that the aim is to be able to replay these events

B The OW process cannot maintain state, and cannot rollback

Input message Output
message

Outside world

>
\ml

Message-passing
system PO

v

P 1
P, \4’”2

v

I > 3 In-transit messages, determinant, logging, or-
phan message

Consistent
state

. . . PO
B |n-transit message: Since we assume reliable co

a message seen as sent, but not yet received,
must be stored with receiver's checkpoint

so that the receiver “replays” the receipt p
when rollbacking

B Determinant of a message = all information necessary to replay the event

B | ogging = saving message determinants in stable storage
Maximum regoverable state

B Orphan message = P B 1 {
a message (which determinant) / \n‘l 4 / SX
was not logged P " "y ® 1y
before the failures B & m; \g‘ Y/
and that cannot be recovered I P ® s [
c 7

ms and m, lost upon
failure

I Approach 1: Checkpoint-based rollback-
recovery

3.1 Uncoordinated Checkpointing
3.2 Coordinated Checkpointing

B More in the article on Communication-Induced Checkpointing

I 3.1 Uncoordinated Checkpointing |

B Each process takes a checkpoint whenever it wants, without coordination
B The pros:

B Choose the right time to decrease the size of the checkpoint (proc. memory)
B The cons:

® A checkpoint may be useless (will never be part of a global consistent state)

® Maintain lot of checkpoints before garbage collection
® Be subject to the domino effect

Recovery

line Checkpoint

WA R
WAL A

/\Failure

I 3.1 Uncoordinated Checkpointing |l

B Determine the maximum recovery line, i.e. max. consistent global
checkpoint
® Track checkpoint interval, piggyback it in messages, and record checkpoint
dependencies

® In case of failure, compute the recovery line in the dependency graph by
starting with the checkpoints of the faulty processes
€0.0 ‘70 1 Co 2 Failure Marked

i |
Recovery
line

P ICIO ” I\ If %o
)

/' P, . i
le /4 P,
P3I > P)

Wi oy

A Survey of Rollback-Recovery Protocols in Message-Passing System|

I 3 2 Coordinated Checkpointing

B Orchestrate checkpointing actions in order to form consistent global states

® Distributed snapshots algorithm “a la” Chandy&Lamport'1985

® Storage of in-transit messages in order to be able to replay them

B Cons

® Synchronisation of all processes = not possible to choose timing individually

B Principle of Communication-Induced Checkpointing (more in the article)

® Piggyback checkpointing information into application messages

so that a process knows
whether taking an uncoordinated-checkpoint “now" may be useless
or not taking a checkpoint “now"” will render other checkpoints useless

I Approach 2: Log-based rollback-recovery

4.1 Always-no-orphans condition
4.2 Pessimistic Logging
4.3 Optimistic Logging

B More in the article on Causal Logging

IA Survey of Rollback-Recovery Protocols in Message-Passing System ill

N /1 Always-no-orphans condition

B Reminder: Piece-wise deterministic assumption

B | og-based rollback-recovery enables rollback-recovery beyond the most
recent set of consistent checkpoints

® Reminder: Determinant of event e = all information necessary to replay e

® Execution can be reconstructed up to the first nondeterministic event whose

determinant is not logged
B Corollary: checkpointing is not necessary before sending to the outside world

B Preliminary definitions about logging

® Depend(e): set of processes that are affected by a nondeterministic event e
® Log(e): set of processes that have logged a copy of e's determinant

(in their volatile memory)
]

Stable(e): true if e's determinant is logged on stable storage

B Always-no-orphans condition = Ve : =Stable(e) = Depend(e) C Log(e)

I 2 Pessimistic Logging |

B “Pessimictic” = a failure can occur after any nondeterministic event
B Synchronous logging: Log the determinant to stable storage before delivery
® Ve :-Stable(e) = |Depend(e)| =0

- maximum recevorable state

@ [1og]

. . z
Logs of Py, Py, and P, contain the determinants needed to replay or detect
the replay of messages [mg, mg, m7], [m1, m3, mg], and [ma, ms], respectively

I 2 Pessimistic Logging Il

B The pros:
® Processes can send messages to the outside world without running a special
protocol
® Processes restart from their most recent checkpoint
® Recovery and garbage collection are simplified
B The cons:
| |

Performance penalty, and, in reality, failures are rare

Countermeasures:

e If only one failure, sender-based message logging: keep the
determinant in the volatile memory of its sender

— Avoid the overhead of accessing stable
storage
e Defer logging until the receiver sends another message

— Relax logging atomicity (i.e., some form of
asynchrony)

N 3 Optimistic Logging
B [og determinants asynchronously to stable storage

® In volatile memory and periodically flushed to stable storage

B |f 3 process fails, the determinants in its volatile memory will be lost

= This solution does not implement the always—no—orphans condition

#maximum recoverable state

—Stable(ms) A Depend(ms) = {P2, P1, Po} Log(ms) = ms, Po..P> orphan

B What if using causal logging? ... Py knows determinants of ms, mg, my ...
see in the article

_ 5 Conclusion

B Concepts

® Checkpoint, piece-wise determinism, rollback-recovery, outside world

® In-transit message, determinant, logging, orphan message

® Checkpoint-based rollback-recovery, un/coordinated Checkpointing,
Without logging, message to the outside world == checkpointing

[

Log-based rollback-recovery, no-orphans condition, pessimistic/optimistic
logging

B More in the article

® Communication-Induced Checkpointing (zigzag path/cycle)
® Causal logging
n

Implementation issues

	Context: Fault-tolerance of long-running applications
	Background and Problem Definition
	System Model and Correctness Condition
	Communication with the Outside World
	In-transit messages, determinant, logging, orphan message

	Approach 1: Checkpoint-based rollback-recovery
	Uncoordinated Checkpointing
	Coordinated Checkpointing

	Approach 2: Log-based rollback-recovery
	Always-no-orphans condition
	Pessimistic Logging
	Optimistic Logging

	Conclusion

