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1 Context: Fault-tolerance of long-running appli-
cations

■ Long-running HPC1 applications for: environment, climate, new energies,
health, biology, transport, geophysics, astrophysics, plasma physics, laser
physics, human and social sciences

■ Too many processes to replicate (active replication),
then fault-tolerance through passive replication

• Save recovery information periodically during failure-free execution
− Processes’ states into what are called checkpoints
− Messages of the interactions into logs

• In case of a crash, recover from an intermediate state by rollbacking
1. High Performance Computing (See Module CSC5001)
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2 Background and Problem Definition

2.1 System Model and Correctness Condition
2.2 Communication with the Outside World
2.3 In-transit messages, determinant, logging, orphan message
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2.1 System Model and Correctness Condition

■ Processes communicate by exchanging messages

■ No partitioning, reliable network, but all processes may fail simultaneously

■ Fail-stop model: Failures are correctly detected

■ The piece-wise deterministic assumption:

• Process execution = sequence of state intervals,
each started by a nondeterministic event

• Process execution = deterministic in state intervals

■ Generic correctness condition for rollback-recovery:

• A system recovers correctly
if its internal state is consistent
with the observable behaviour
of the system before the failure
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2.2 Communication with the Outside World

■ Nondeterministic events (e.g. timeouts) can be modelled as input messages

• Remember that the aim is to be able to replay these events

■ The OW process cannot maintain state, and cannot rollback
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2.3 In-transit messages, determinant, logging, or-
phan message

■ In-transit message: Since we assume reliable communication,
a message seen as sent, but not yet received,
must be stored with receiver’s checkpoint
so that the receiver “replays” the receipt
when rollbacking

■ Determinant of a message = all information necessary to replay the event

■ Logging = saving message determinants in stable storage

■ Orphan message =
a message (which determinant)
was not logged
before the failures
and that cannot be recovered
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3 Approach 1: Checkpoint-based rollback-
recovery

3.1 Uncoordinated Checkpointing
3.2 Coordinated Checkpointing
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■ More in the article on Communication-Induced Checkpointing



3.1 Uncoordinated Checkpointing I

■ Each process takes a checkpoint whenever it wants, without coordination
■ The pros:
• Choose the right time to decrease the size of the checkpoint (proc. memory)

■ The cons:
• A checkpoint may be useless (will never be part of a global consistent state)
• Maintain lot of checkpoints before garbage collection
• Be subject to the domino effect

9/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems



3.1 Uncoordinated Checkpointing II

■ Determine the maximum recovery line, i.e. max. consistent global
checkpoint

• Track checkpoint interval, piggyback it in messages, and record checkpoint
dependencies

• In case of failure, compute the recovery line in the dependency graph by
starting with the checkpoints of the faulty processes
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3.2 Coordinated Checkpointing

■ Orchestrate checkpointing actions in order to form consistent global states

• Distributed snapshots algorithm “à la” Chandy&Lamport’1985
• Storage of in-transit messages in order to be able to replay them

■ Cons

• Synchronisation of all processes =⇒ not possible to choose timing individually

■ Principle of Communication-Induced Checkpointing (more in the article)

• Piggyback checkpointing information into application messages
so that a process knows
whether taking an uncoordinated-checkpoint “now” may be useless
or not taking a checkpoint “now” will render other checkpoints useless
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4 Approach 2: Log-based rollback-recovery

4.1 Always-no-orphans condition
4.2 Pessimistic Logging
4.3 Optimistic Logging
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■ More in the article on Causal Logging



4.1 Always-no-orphans condition

■ Reminder: Piece-wise deterministic assumption
■ Log-based rollback-recovery enables rollback-recovery beyond the most

recent set of consistent checkpoints
• Reminder: Determinant of event e = all information necessary to replay e
• Execution can be reconstructed up to the first nondeterministic event whose

determinant is not logged

■ Corollary: checkpointing is not necessary before sending to the outside world
■ Preliminary definitions about logging
• Depend(e): set of processes that are affected by a nondeterministic event e
• Log(e): set of processes that have logged a copy of e’s determinant

(in their volatile memory)
• Stable(e): true if e’s determinant is logged on stable storage

■ Always-no-orphans condition ≡ ∀e : ¬Stable(e) =⇒ Depend(e) ⊆ Log(e)
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4.2 Pessimistic Logging I

■ “Pessimictic” = a failure can occur after any nondeterministic event

■ Synchronous logging: Log the determinant to stable storage before delivery

• ∀e : ¬Stable(e) =⇒ |Depend(e)| = 0
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Logs of P0, P1, and P2 contain the determinants needed to replay or detect
the replay of messages [m0, m4, m7], [m1, m3, m6], and [m2, m5], respectively
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4.2 Pessimistic Logging II
■ The pros:
• Processes can send messages to the outside world without running a special

protocol
• Processes restart from their most recent checkpoint
• Recovery and garbage collection are simplified

■ The cons:
• Performance penalty, and, in reality, failures are rare

− Countermeasures:
• If only one failure, sender-based message logging: keep the

determinant in the volatile memory of its sender
=⇒ Avoid the overhead of accessing stable

storage
• Defer logging until the receiver sends another message

=⇒ Relax logging atomicity (i.e., some form of
asynchrony)
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4.3 Optimistic Logging
■ Log determinants asynchronously to stable storage
• In volatile memory and periodically flushed to stable storage

■ If a process fails, the determinants in its volatile memory will be lost

=⇒ This solution does not implement the always-no-orphans condition
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¬Stable(m5) ∧ Depend(m5) = {P2, P1, P0} ̸⊆ Log(m5) =⇒ m5, P0..P2 orphan

■ What if using causal logging? ... P0 knows determinants of m5, m6, m7 ...
see in the article
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5 Conclusion

■ Concepts

• Checkpoint, piece-wise determinism, rollback-recovery, outside world
• In-transit message, determinant, logging, orphan message
• Checkpoint-based rollback-recovery, un/coordinated Checkpointing,

− Without logging, message to the outside world =⇒ checkpointing
• Log-based rollback-recovery, no-orphans condition, pessimistic/optimistic

logging

■ More in the article

• Communication-Induced Checkpointing (zigzag path/cycle)
• Causal logging
• Implementation issues
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