
A Survey of
Rollback-Recovery
Protocols in
Message-Passing Systems
E.N. Elnozahy, L. Alivisi, Y.-M. Wang, and D.B.
Johnson

Presented by Denis Conan

June 2024

Outline

1. Context: Fault-tolerance of long-running applications
2. Background and Problem Definition
3. Approach 1: Checkpoint-based rollback-recovery
4. Approach 2: Log-based rollback-recovery
5. Conclusion

2/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

1 Context: Fault-tolerance of long-running appli-
cations

■ Long-running HPC1 applications for: environment, climate, new energies,
health, biology, transport, geophysics, astrophysics, plasma physics, laser
physics, human and social sciences

■ Too many processes to replicate (active replication),
then fault-tolerance through passive replication

• Save recovery information periodically during failure-free execution
− Processes’ states into what are called checkpoints
− Messages of the interactions into logs

• In case of a crash, recover from an intermediate state by rollbacking
1. High Performance Computing (See Module CSC5001)

3/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

2 Background and Problem Definition

2.1 System Model and Correctness Condition
2.2 Communication with the Outside World
2.3 In-transit messages, determinant, logging, orphan message

4/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

2.1 System Model and Correctness Condition

■ Processes communicate by exchanging messages

■ No partitioning, reliable network, but all processes may fail simultaneously

■ Fail-stop model: Failures are correctly detected

■ The piece-wise deterministic assumption:

• Process execution = sequence of state intervals,
each started by a nondeterministic event

• Process execution = deterministic in state intervals

■ Generic correctness condition for rollback-recovery:

• A system recovers correctly
if its internal state is consistent
with the observable behaviour
of the system before the failure

5/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

:P2:P1:P0

load data

return
average

compute average

compute average

compute average

compute average

compute
average

scatter data

2.2 Communication with the Outside World

■ Nondeterministic events (e.g. timeouts) can be modelled as input messages

• Remember that the aim is to be able to replay these events

■ The OW process cannot maintain state, and cannot rollback

6/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

2.3 In-transit messages, determinant, logging, or-
phan message

■ In-transit message: Since we assume reliable communication,
a message seen as sent, but not yet received,
must be stored with receiver’s checkpoint
so that the receiver “replays” the receipt
when rollbacking

■ Determinant of a message = all information necessary to replay the event

■ Logging = saving message determinants in stable storage

■ Orphan message =
a message (which determinant)
was not logged
before the failures
and that cannot be recovered

7/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

3 Approach 1: Checkpoint-based rollback-
recovery

3.1 Uncoordinated Checkpointing
3.2 Coordinated Checkpointing

8/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

■ More in the article on Communication-Induced Checkpointing

3.1 Uncoordinated Checkpointing I

■ Each process takes a checkpoint whenever it wants, without coordination
■ The pros:
• Choose the right time to decrease the size of the checkpoint (proc. memory)

■ The cons:
• A checkpoint may be useless (will never be part of a global consistent state)
• Maintain lot of checkpoints before garbage collection
• Be subject to the domino effect

9/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

3.1 Uncoordinated Checkpointing II

■ Determine the maximum recovery line, i.e. max. consistent global
checkpoint

• Track checkpoint interval, piggyback it in messages, and record checkpoint
dependencies

• In case of failure, compute the recovery line in the dependency graph by
starting with the checkpoints of the faulty processes

10/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

3.2 Coordinated Checkpointing

■ Orchestrate checkpointing actions in order to form consistent global states

• Distributed snapshots algorithm “à la” Chandy&Lamport’1985
• Storage of in-transit messages in order to be able to replay them

■ Cons

• Synchronisation of all processes =⇒ not possible to choose timing individually

■ Principle of Communication-Induced Checkpointing (more in the article)

• Piggyback checkpointing information into application messages
so that a process knows
whether taking an uncoordinated-checkpoint “now” may be useless
or not taking a checkpoint “now” will render other checkpoints useless

11/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

4 Approach 2: Log-based rollback-recovery

4.1 Always-no-orphans condition
4.2 Pessimistic Logging
4.3 Optimistic Logging

12/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

■ More in the article on Causal Logging

4.1 Always-no-orphans condition

■ Reminder: Piece-wise deterministic assumption
■ Log-based rollback-recovery enables rollback-recovery beyond the most

recent set of consistent checkpoints
• Reminder: Determinant of event e = all information necessary to replay e
• Execution can be reconstructed up to the first nondeterministic event whose

determinant is not logged

■ Corollary: checkpointing is not necessary before sending to the outside world
■ Preliminary definitions about logging
• Depend(e): set of processes that are affected by a nondeterministic event e
• Log(e): set of processes that have logged a copy of e’s determinant

(in their volatile memory)
• Stable(e): true if e’s determinant is logged on stable storage

■ Always-no-orphans condition ≡ ∀e : ¬Stable(e) =⇒ Depend(e) ⊆ Log(e)

13/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

4.2 Pessimistic Logging I

■ “Pessimictic” = a failure can occur after any nondeterministic event

■ Synchronous logging: Log the determinant to stable storage before delivery

• ∀e : ¬Stable(e) =⇒ |Depend(e)| = 0

Y

X

Z

C

B

A

P2

P1

P0

maximum recevorable state

log

m0

log

m7

log

m6

log

m5

log

m4

log

m3

log

m2

log

m1

Logs of P0, P1, and P2 contain the determinants needed to replay or detect
the replay of messages [m0, m4, m7], [m1, m3, m6], and [m2, m5], respectively

14/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

4.2 Pessimistic Logging II
■ The pros:
• Processes can send messages to the outside world without running a special

protocol
• Processes restart from their most recent checkpoint
• Recovery and garbage collection are simplified

■ The cons:
• Performance penalty, and, in reality, failures are rare

− Countermeasures:
• If only one failure, sender-based message logging: keep the

determinant in the volatile memory of its sender
=⇒ Avoid the overhead of accessing stable

storage
• Defer logging until the receiver sends another message

=⇒ Relax logging atomicity (i.e., some form of
asynchrony)

15/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

4.3 Optimistic Logging
■ Log determinants asynchronously to stable storage
• In volatile memory and periodically flushed to stable storage

■ If a process fails, the determinants in its volatile memory will be lost

=⇒ This solution does not implement the always-no-orphans condition

C

B

A

Y

X

Z

P2

P1

P0
maximum recoverable state

loglog

log

log

log

log

m0 m7

m6
 m5

m4

m3m2

m1

¬Stable(m5) ∧ Depend(m5) = {P2, P1, P0} ̸⊆ Log(m5) =⇒ m5, P0..P2 orphan

■ What if using causal logging? ... P0 knows determinants of m5, m6, m7 ...
see in the article

16/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

5 Conclusion

■ Concepts

• Checkpoint, piece-wise determinism, rollback-recovery, outside world
• In-transit message, determinant, logging, orphan message
• Checkpoint-based rollback-recovery, un/coordinated Checkpointing,

− Without logging, message to the outside world =⇒ checkpointing
• Log-based rollback-recovery, no-orphans condition, pessimistic/optimistic

logging

■ More in the article

• Communication-Induced Checkpointing (zigzag path/cycle)
• Causal logging
• Implementation issues

17/17 06/2024 Denis Conan A Survey of Rollback-Recovery Protocols in Message-Passing Systems

	Context: Fault-tolerance of long-running applications
	Background and Problem Definition
	System Model and Correctness Condition
	Communication with the Outside World
	In-transit messages, determinant, logging, orphan message

	Approach 1: Checkpoint-based rollback-recovery
	Uncoordinated Checkpointing
	Coordinated Checkpointing

	Approach 2: Log-based rollback-recovery
	Always-no-orphans condition
	Pessimistic Logging
	Optimistic Logging

	Conclusion

