
1

System calls

Gaël Thomas

CSC4508 – Operating Systems
2022–2023

System calls

2

1 Operating systems

■ Features
♦ Offers a unified programming interface to the developer
♦ Hides hardware implementation details
♦ Allows you to run multiple processes on a processor

■ Composition
♦ A library called kernel (noyau in French)
▶ Unified programming interface (open, fork, etc.)
▶ Defined by specifications (System V, POSIX, Win32. . .)

♦ + A set of programs allowing to interact with the core
▶ ls, cp, X, gnome, etc.

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 2/12

System calls 1 Operating systems

3

1.1 Operating systems (2/2)

hardware

operating system

libraries

application

CPU Mem Disk ...

�lesystem

device driver

block char netw

bu�er cache

networkipc scheduler

memory
management

li
b

c

fprintf

write syscall wrappers

high level API

write

sd_setup_read_write_cmnd

main

store_result

k
e

rn
e

l
sp

a
ce

u
se

r
 s

p
a

ce

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 3/12

System calls 1 Operating systems

4

1.2 Testing the return value of system calls and functions

■ You must always test the return value of a system call and deal with errors
♦ Prevent the propagation of errors (the discovery of the error can take place much

later)
▶ see the fail-fast approach presented in CSC4102

■ errno: external variable indicating the cause of the last error
♦ The ERRORS section in a function manual describes the possible causes of error.

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 4/12

System calls

5

2 Stack frames

■ Each function call creates an stack frame
■ A stack frame contains

♦ local variables
♦ a backup of the modified registers
♦ the arguments of the function (specific to 32-bit x86 architectures)
♦ the return address of the function (specific to x86 architectures)

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 5/12

System calls 2 Stack frames

6

2.1 Content of a stack frame

■ A stack frame is defined by
♦ a base address that indicates where the frame begins (the rbp register on x86)
♦ the address of the top of the stack (the rsp register on x86)

■ Function entry:
♦ Save rbp (using push rbp)
♦ Reset rbp (using mov rbp, rsp)

■ Function exit:
♦ Restore of the old rbp (pop rbp)
♦ Jump to the return address (ret)

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 6/12

System calls 2 Stack frames

7

2.2 Buffer overflow

■ (in French dépassement de tampon)
■ Writing data outside the space allocated for a buffer
■ Risk of overwriting other data
■ Security vulnerability: overwriting data may change the behavior of the application

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 7/12

2 Stack frames 2.2 Buffer overflow

8

2.2.1 Stack overflow

■ Using a buffer overflow to change the program execution flow
■ The return address of a function is on the stack

=⇒ possibility of choosing the code to be executed afterwards

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 8/12

2 Stack frames 2.2 Buffer overflow

9

2.2.2 How to prevent buffer / stack overflow?

■ Check the boundaries of buffers
♦ done automatically in Java
♦ not done in C / C ++ because it is too expensive

■ Do not use the “ unsafe ” functions (strcpy, gets ...)
♦ Use their safe counterpart instead (strncpy, fgets ...)

■ Non-executable stack (enabled by default by Linux)
♦ avoid the execution of an arbitrary code

■ Stack canaries
♦ A canary (a specific value) is placed on the stack when entering a function
♦ If when exiting the function, the canary has been modified, there has been a

stack overflow
♦ Use the -fstack-protector-all option in gcc

■ Address space layout randomization (ASLR) (enabled by default by Linux)
♦ load the application code to a random address

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 9/12

System calls

10

3 User/system interface

■ The kernel must protect from processes
♦ To avoid bugs
♦ To avoid attacks

■ For this, the processor offers two operating modes
♦ The system mode: access to all the memory and to all the processor

instructions
♦ The user mode: access only to the process memory and to a restricted set of

instructions
▶ In particular, no direct access to peripherals and instructions that manage the

permissions associated with the memory

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 10/12

System calls 3 User/system interface

11

3.1 User/system interface

■ Problem: how do you call a kernel function when you can’t access its memory?

process
code

process
data

kernel
code

kernel
data

the process g()

calls function
read in the kernel

code f()

and g()

the process f()

calls g() within the process
OK

 accessible
memory

non-accessible
memory read() code

Impossible !!!

Forbidden memory
access

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 11/12

System calls 3 User/system interface

12

3.2 User/system interface

■ Solution: special processor instruction called trap
♦ The kernel associates the address of a syscall function to trap
♦ To call a kernel function
▶ The process gives the function number to call via a parameter
▶ The process executes the trap instruction
▶ The processor changes mode and executes the syscall instruction
▶ syscall uses the parameter to select the kernel function to be executed

process
code

process
data

kernel
code

kernel
data

parameter = 4 (read)

trap

 accessible
memory

non-accessible
memory

syscall

read

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 12/12

Bibliography

