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1 Operating systems

■ Features
♦ Offers a unified programming interface to the developer
♦ Hides hardware implementation details
♦ Allows you to run multiple processes on a processor

■ Composition
♦ A library called kernel (noyau in French)
▶ Unified programming interface (open, fork, etc.)
▶ Defined by specifications (System V, POSIX, Win32. . . )

♦ + A set of programs allowing to interact with the core
▶ ls, cp, X, gnome, etc.

Télécom SudParis — Gaël Thomas — 2022–2023 — CSC4508 – Operating Systems 2/12



System calls 1 Operating systems

# 3

1.1 Operating systems (2/2)
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1.2 Testing the return value of system calls and functions

■ You must always test the return value of a system call and deal with errors
♦ Prevent the propagation of errors (the discovery of the error can take place much

later)
▶ see the fail-fast approach presented in CSC4102

■ errno: external variable indicating the cause of the last error
♦ The ERRORS section in a function manual describes the possible causes of error.
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2 Stack frames

■ Each function call creates an stack frame
■ A stack frame contains

♦ local variables
♦ a backup of the modified registers
♦ the arguments of the function (specific to 32-bit x86 architectures)
♦ the return address of the function (specific to x86 architectures)
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2.1 Content of a stack frame

■ A stack frame is defined by
♦ a base address that indicates where the frame begins (the rbp register on x86)
♦ the address of the top of the stack (the rsp register on x86)

■ Function entry:
♦ Save rbp (using push rbp)
♦ Reset rbp (using mov rbp, rsp)

■ Function exit:
♦ Restore of the old rbp (pop rbp)
♦ Jump to the return address (ret)
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2.2 Buffer overflow

■ (in French dépassement de tampon)
■ Writing data outside the space allocated for a buffer
■ Risk of overwriting other data
■ Security vulnerability: overwriting data may change the behavior of the application
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2.2.1 Stack overflow

■ Using a buffer overflow to change the program execution flow
■ The return address of a function is on the stack

=⇒ possibility of choosing the code to be executed afterwards
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2.2.2 How to prevent buffer / stack overflow?

■ Check the boundaries of buffers
♦ done automatically in Java
♦ not done in C / C ++ because it is too expensive

■ Do not use the “ unsafe ” functions (strcpy, gets ...)
♦ Use their safe counterpart instead (strncpy, fgets ...)

■ Non-executable stack (enabled by default by Linux)
♦ avoid the execution of an arbitrary code

■ Stack canaries
♦ A canary (a specific value) is placed on the stack when entering a function
♦ If when exiting the function, the canary has been modified, there has been a

stack overflow
♦ Use the -fstack-protector-all option in gcc

■ Address space layout randomization (ASLR) (enabled by default by Linux)
♦ load the application code to a random address
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3 User/system interface

■ The kernel must protect from processes
♦ To avoid bugs
♦ To avoid attacks

■ For this, the processor offers two operating modes
♦ The system mode: access to all the memory and to all the processor

instructions
♦ The user mode: access only to the process memory and to a restricted set of

instructions
▶ In particular, no direct access to peripherals and instructions that manage the

permissions associated with the memory
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3.1 User/system interface

■ Problem: how do you call a kernel function when you can’t access its memory?
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3.2 User/system interface

■ Solution: special processor instruction called trap
♦ The kernel associates the address of a syscall function to trap
♦ To call a kernel function
▶ The process gives the function number to call via a parameter
▶ The process executes the trap instruction
▶ The processor changes mode and executes the syscall instruction
▶ syscall uses the parameter to select the kernel function to be executed
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