
Architecture(s) et application(s)

Web

Télécom SudParis Olivier Berger (TSP)

01/09/2024

CSC4101 - Cours PHP

CSC4101 2025-2026 CM 1

Table des matières

1 Généralités sur le langage PHP 3

2 Langage PHP 6

3 Syntaxe objet 8

4 Installation des outils et bibliothèques 12

5 Mettre au point et tester le code 17

Poly étudiant 1

CSC4101 2025-2026 CM 1

Objectifs de cette séquence

L’objectif de cette séquence du cours est de présenter le premier grand ensemble de tech-
nologies de mises en œuvre qui vont nous servir dans les séquences pratiques du cours,
autour du langage PHP.

Poly étudiant 2

CSC4101 2025-2026 CM 1

1 Généralités sur le langage PHP

En introduction de cette séquence, voici, pour votre information quelques élé-
ments relatifs aux choix des technologies du monde PHP qu’on emploiera dans
ce module.

1.1 Survol rapide

— Pas un cours pour enseigner le langage : apprentissage en autonomie
— Quelques éléments pour planter le décor

Les bases du langage seront étudiées en travail autonome, sur des ressources
externes.

1.2 Faire tourner des programmes sur le serveur Web

— Besoin : Programmer des applications (couche traitements, qui s’exécute côté ser-
veur)

— Choix d’un langage ?
— Choix d’une technologie associée ?

Dans ce module, notre but est de pouvoir faire tourner une application sur un
serveur Web.
De nombreux langages et environnement de développement Web sont dispo-
nibles.
Pour une découverte de la programmation des applications Web par la pratique,
nous avons fait le choix du langage PHP et de l’environnement Symfony,
pour leur qualités dans un contexte pédagogique.
Une grande partie des aspects techniques étudiés se retrouveront dans d’autres
langages ou frameworks.

1.3 Langage choisi : PHP

— Langage nouveau (pour vous)
— « Proche » de Java (ou C)
— Interprété (comme Bash ou Python)

Mais aussi des outils…

1.4 Mais pourquoi tant de haine?

Cf. « Why developers hate PHP » par Mehdi Zedi
— Vous aimez apprendre des choses à la mode?
vous allez voir des choses modernes, si si (objet)

— PHP est un vieux langage à la mauvaise réputation
— Vous allez devoir bosser (de plus en plus) sur des vieux trucs : importance de la

maintenance vs innovation (ou innovation dans la maintenance) : ODD ?
— Les outils qu’on vous présente (Symfony) sont à l’état de l’art (objet, génie logi-
ciel)

— Approche pédagogique : complexité maîtrisée (application des concepts en 2A,
chaque chose en son temps)

Poly étudiant 3

https://www.jesuisundev.com/en/why-developers-hate-php/

CSC4101 2025-2026 CM 1

PHP est un vieux langage, et de nombreux tutoriaux ou manuels expliquent
comment le prendre en main.
PHP est parfois dénigré car il supporte encore des façons de programmer qui
sont déconseillées depuis longtemps.
Ce n’est pas une raison pour jeter PHP à la poubelle. Il y a de bonnes pratiques
pour utiliser PHP de façon moderne et produire des programmes de bonne qua-
lité.
Nous présentons rapidement quelques-uns de ces éléments, dans ce cours, que
nous reverrons plus en détail dans les phases pratiques.

1.5 Symfony : PHP moderne

1.5.1 PHP « comme il faut »

S’appuyer sur un cadriciel (framework) moderne comme Symfony
— orienté objet
— fonctionnel
— injection de dépendances, conteneurs
— templates
— PHPDoc
— tests
— …

Suite : http://www.phptherightway.com/

La plupart des cours ou tutoriaux qu’on trouve sur PHP sur le Net datent un
peu… pourtant il existe d’excellents documents actuels, comme le site ci-dessus
« PHP the right way » de Josh Lockhart et al.

1.6 Le cadriciel moderne : Symfony 6

— Framework de référence
— Assemblage de beaucoup de bibliothèques
— Modèle de composants objet évolué
— Documentation
— Communauté
— Environnement de mise au point

https://symfony.com/

Dans le cours, on utilisera Symfony 6, la version « Long-Term Support (LTS) »
actuelle.
Attention, la version 7, est la version stable actuelle, mais nous n’avons pas
adapté les contenus pour l’utiliser.
Attention aux documents ou tutoriaux portant sur des versions antérieures, qui
foisonnent sur le Web, et ne s’appliquent pas forcément à cette version récente
de Symfony.

1.6.1 Une licorne française - SensioLabs

https://sensiolabs.com/

Poly étudiant 4

http://www.phptherightway.com/
https://symfony.com/
https://sensiolabs.com/

CSC4101 2025-2026 CM 1

”HistoiresdeFrance, chapitre 21 (2016)”

« SensioLabs, une des plus belles réussites françaises du web » –
In #HistoiresdeFrance, chapitre 21 (post X du Gouvernement Français, décembre 2016 -
cf. sauvegarde sur/ Internet Archive)

1.7 Autres frameworks :

PHP Laravel, CodeIgniter, CakePHP, Zend, …

Ruby Ruby on Rails, Sinatra, …

Node.js Meteor, Express.js, …

Python Django, Flask, …

Java Spring, Struts,

Poly étudiant 5

https://x.com/gouvernementFR/status/810046567151333376
https://web.archive.org/web/20220630175114/https://www.gouvernement.fr/sensiolabs-une-des-plus-belles-reussites-francaises-du-web

CSC4101 2025-2026 CM 1

2 Langage PHP

L’apprentissage des bases du langage sera fait en autonomie dans la prochaine
séquence hors-présentielle.
Nous allons présenter ici quelques aspects avancés du langage et de son envi-
ronnement, non couverts par les tutoriels de base, et qui serviront dans la suite
du cours dès la prochaine séquence de travaux pratiques.
Il n’est pas utile de comprendre tous les détails dès maintenant, mais de pouvoir
s’y référer ultérieurement.

2.1 Langage

— Syntaxe style C / Java
— Objets
— Interprété
— Héritage contexte Web, CGI (« PHP : Hypertext Preprocessor »)
— Depuis 1994 (PHP 8 depuis fin 2020)
— Versions pour ce cours : >= 8.3

PHP est l’un des langages les plus populaires sur le Web. Cf. Usage statistics and
market share of PHP for websites pour quelques éléments chiffrés.
Les versions de PHP que vous allez utiliser devraient typiquement être PHP 8,
comme sur machines DISI salle de TP
Pour plus de détails sur les elePHPants (mascote du langage), voir Comment et
pourquoi la mascotte PHP est-elle venue à la naissance ? L’histoire secrète d’Ele-
PHPant ! et A Field Guide to Elephpants - Detailing the attributes, habitats, and
variations of the Elephpas hypertextus.

2.1.1 Hello world

<html>
<head>
<title>Test PHP</title>

</head>
<body>
<?php echo '<p>Bonjour le monde</p>'; ?>

</body>
</html>

ou bien :

<?php

$html = "<html><head><title>Test PHP</title></head><body>";
$html .= "<p>Bonjour le monde</p>";

Poly étudiant 6

https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/all/all
https://7php.com/elephpant/
https://7php.com/elephpant/
https://7php.com/elephpant/
http://afieldguidetoelephpants.net/
http://afieldguidetoelephpants.net/

CSC4101 2025-2026 CM 1

$html .= "</body></html>";
print($html);

PHP permet d’écrire des morceaux de programme à l’intérieur de pages HTML
(inline).
Que peut-on en penser ?

2.1.2 PHP inline

— Mélanger la présentation (HTML) et le code (PHP)… c’est mal : maintenable ?
— On verra comment faire autrement dans une prochaine séquence.

Cf. les gabarits (templates) en séquence 3.

2.2 La documentation

— Le site de PHP : http://php.net/
— La documentation : http://php.net/manual/fr/

La documentation de référence est à préférer, en cas de doute, notamment pour
les fonctions de la bibliothèque standard.
Cependant, on peut douter de sa qualité pédagogique pour l’apprentissage.
On verra que la documentation de Symfony est par contre d’excellente qualité
en général.

2.3 Syntaxe

Vous allez commencer à l’apprendre en hors-présentiel, cette semaine
Vous devriez comprendre ce que je vais montrer

Poly étudiant 7

http://php.net/
http://php.net/manual/fr/

CSC4101 2025-2026 CM 1

3 Syntaxe objet

Ce cours ne contient pas de manuel d’introduction à la programmation en PHP.
Nous présentons ici quelques éléments particulièrement importants du modèle
objet, et des fonctionnalités avancées utiles dans un projet Symfony.

3.1 Appel de méthode

// crée une instance de la classe SymfonyStyle

$io = new SymfonyStyle($input, $output);

// appel de la méthode title() sur cette instance
// pas de valeur de retour

$io->title('list of todos:');

namespace Symfony\Component\Console\Style;
/**
* Output decorator helpers for the Symfony Style Guide.
*/
class SymfonyStyle extends OutputStyle
{

// [...]

namespace Symfony\Component\Console\Style;
/**
* Decorates output to add console style guide helpers.
*/
abstract class OutputStyle implements OutputInterface, StyleInterface
{

// [...]

namespace Symfony\Component\Console\Style;
/**
* Output style helpers.
*/
interface StyleInterface
{

/**
* Formats a command title.
*/
public function title(string $message);

— Syntaxe java : instance.methode()
— Syntaxe PHP : $instance->methode()

3.2 Constructeur, propriétés internes

// Classe

class MyCommand
{

// Propriété / attribut / variable d'instance

private $todoRepository;

// Constructeur

public function __construct($repository)

Poly étudiant 8

CSC4101 2025-2026 CM 1

{
$this->todoRepository = $repository;

}

// Méthode d'instance

protected function execute()
{

$todos = $this->todoRepository->findAll();
}

— Syntaxe java : this.propriete
— Syntaxe PHP : $this->propriete

3.3 Valeur de retour

class ListTodosCommand extends Command
{

// [...]
protected function execute(SymfonyStyle $io): int
{

$todos = $this->todoRepository->findAll();

if(empty($todos)) {
return Command::FAILURE;

}
else {

$io->title('list of todos:');
$io->listing($todos);

}

return Command::SUCCESS;
}

— Command::SUCCESS et Command::FAILURE sont des propriétés statiques de la
classe Command (des constantes)

— empty() : tableau vide. Mais en fait « A variable is considered empty if it
does not exist or if its value equals false. » (Cf. empty — Determine whe-
ther a variable is empty)

3.4 Surcharge / héritage

use Symfony\Component\Console\Command\Command;

// Classe ListTodo hérite de Command

class ListTodosCommand extends Command
{

// Constructeur

public function __construct($repository)
{

$this->todoRepository = $repository;

// Appel du constructeur de la classe mère

parent::__construct();
}

// [...]

Poly étudiant 9

https://www.php.net/manual/en/function.empty.php
https://www.php.net/manual/en/function.empty.php

CSC4101 2025-2026 CM 1

— Hérite d’une classe existante de la bibliothèque Symfony
— Surcharge du comportement par défaut dans le constructeur, donc appel
au constructeur de la classe parente (ici Command)

3.5 Espaces de noms

namespace App\Command;

use Symfony\Component\Console\Command\Command;
use App\Entity\Todo;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

// Classe App\Command\MyCommand

class MyCommand extends Command
{

// ...
public function __construct(ManagerRegistry $manager)
{

$this->todoRepository = $manager->getRepository(Todo::class);

parent::__construct();
}

protected function execute(InputInterface $input, OutputInterface $output): int
{

// ...
return Command::SUCCESS;

}

— Todo::class : l’objet classe lui-même (appel de méthodes statiques, etc.).
Pas une instance de cette classe.

3.6 Docblocks PHPDoc

— Commentaires améliorés
— méta-informations

/**
* Classe "Circuit" du Modèle
*/
class Circuit
{
...

/**
* Set description
*
* @param string $description
*
* @return Circuit
*/
public function setDescription($description)
{

...

Poly étudiant 10

CSC4101 2025-2026 CM 1

Les Docblocks PHPDoc étendent le langage PHP en fournissant le moyen d’ajou-
ter des méta-informations dans des « commentaires améliorés » associés au
code PHP.
Ils sont particulièrement utiles pour embarquer la documentation des entités
appelées, pour s’y référer quand on programme les entités appelantes : la do-
cumentation est accessible dans l’éditeur/IDE, qui peut proposer des fonctions
d’auto-complétion et de détection des erreurs dans le code.
C’est particulièrement utile quand on est dans un langage interprété (pas de
compilateur pour éviter certaines erreurs), et quand on n’a pas le temps de lire
les manuels des bibliothèques !
Par exemple, dans l’exemple ci-dessus, l’éditeur proposera directement la sai-
sie d’une chaîne de caractères quand le programmeur saisit une invocation de la
méthode setDescription().
Ce mécanisme et sa syntaxe sont identiques à d’autres langages de programma-
tion, avec par exemple JavaDoc en Java.
Cf. documentation de PHPDocumentor : https://docs.phpdoc.org/ pour plus de
détails.

3.7 Annotations : attributs PHP (> PHP 8.x)

// AsCommand: "Service tag to autoconfigure commands"
use Symfony\Component\Console\Attribute\AsCommand;

use Symfony\Component\Console\Command\Command;

// the command name and description shown when running "php bin/console list"
#[AsCommand(

name: 'app:list-todos',
description: 'List tasks',

)]
class ListTodosCommand extends Command
{

façon déclarative d’enrichir le code, au lieu de :

use Symfony\Component\Console\Command\Command;

class ListTodosCommand extends Command
{

// the command name and description shown when running "php bin/console list"
protected static $defaultName = 'app:list-todos';
protected static $defaultDescription = 'List tasks';

Les attributs ajoutent des méta-données dans le code source PHP, et permettent
une programmation réflexive (introspection).
On « décore » le code avec des propriétés utiles, par exemple des contraintes sur
la validité, ou le stockage des données.
On verra que le composant Doctrine, ou le routeur Symfony utilisent ces attri-
buts pour « décorer » le code, facilitant la maintenance en ne dispersant pas à
différents endroits les propriétés de l’application.
Il est préférable d’utiliser un éditeur récent compatible (comme Eclipse PDT en
version supérieure à 2023-06), pour faciliter la reconnaissance de ces attributs
et leurs ajouts dans le code.

Poly étudiant 11

https://docs.phpdoc.org/

CSC4101 2025-2026 CM 1

4 Installation des outils et bibliothèques

Nous installerons/utiliserons la variante CLI (Command Line Interface)
— Interpréteur ligne de commande (php-cli)

$ php helloworld.php

— Interpréteur invoqué par le serveur HTTP (php)
— Bibliothèques :
— php-sqlite3
— php-intl
— php-xml
— …

La distribution PHP peut être installée en deux variantes selon le contexte d’utili-
sation.
Attention à bien spécifier la bonne variante à l’installation.
Dans le cours, nous utiliserons principalement la première, pour le développeur
PHP : pour la ligne de commande (installer le paquetage php-cli).
La seconde est plutôt utilisée pour la mise en production sur des serveurs Web.

4.1 Bibliothèques complémentaires

Logiciels faisant partie de l’écosystème de bibliothèques, composants, frameworks PHP.
Sources :
— Composer : utiliser des bibliothèques libres
— PEAR (PHP Extension and Application Repository)

Les bibliothèques distribuées via PEAR sont typiquement déjà installées (pré-
compilées) via des paquetages de distributions GNU/Linux. Elles ne sous inté-
resseront pas dans le contexte de ce cours.
On va par-contre utiliser Composer, dont voici quelques caractéristiques.

4.2 Composer

Gestionnaire de paquetages PHP.

https://getcomposer.org/
Il fournit :
— gestionnaire de dépendances entre bibliothèques (et entre versions),
— téléchargement des paquetages des bibliothèques depuis packagist
— autoloader qui facilite les déclarations et les chargements associés au démarrage
des programmes,

Poly étudiant 12

https://getcomposer.org/

CSC4101 2025-2026 CM 1

Composer est le gestionnaire de paquetages PHP, comme il en existe pour de
nombreux langages de programmation.
On va utiliser Composer intensément quand on développera avec le framework
Symfony. Les bibliothèques PHP utiles à un projet sont téléchargées grâce à
Composer et installées dans le répertoire du projet.

4.2.1 Packagist (optionnel)

https://packagist.org/
Référentiel en ligne de paquetages (packages) pour Composer :
— contributif
— différentes versions de chaque paquetage

Nous mentionnons l’existence de Packagist uniquement pour votre culture. On
s’en servira via Composer, de façon transparente.
Packagist constitue un dépôt de paquetages contributif, où des développeurs
PHP peuvent publier leurs bibliothèques (libres).
N’importe qui peut y publier ses contributions.

Packages registered 374 425
Versions available 4 008 934
Packages installed 84 730 075 331

(since 2012-04-13)
(source : https://packagist.org/statistics, au 28/06/2023) Une fois qu’un pa-
quetage est référencé sur packagist, il est téléchargeable par d’autres dévelop-
peurs PHP grâce à Composer.
Pour publier un paquetage, il suffit par exemple de rendre public un référen-
tiel Git, ce qui facilite la contribution de paquetages PHP, en logiciel libre, par
exemple depuis GitHub.

4.2.2 Descripteur composer.json

Exemple de description d’un projet local :

{
"type": "project",
"require": {

"php": ">=8.1",
"symfony/console": "^6.4",
"symfony/flex": "^1.0",
"symfony/framework-bundle": "^6.4"

},
"require-dev": {

"symfony/dotenv": "^6.4"
},
"config": {

"preferred-install": {
"*": "dist"

},
"sort-packages": true

},
"autoload": {

"psr-4": {
"App\\": "src/"

}
}

}

Poly étudiant 13

https://packagist.org/
https://packagist.org/statistics

CSC4101 2025-2026 CM 1

Chaque projet contiendra donc un fichier composer.json dont le contenu est ren-
seigné par les développeurs pour y définir les dépendances particulières à télé-
charger.
Cet exemple (fictif) définit l’environnement nécessaire au développement d’une
application Symfony.
On trouve les règles suivantes :
— dépendance sur PHP 8
— dépendance des bibliothèques nécessaires à l’exécution de l’application dé-
ployée : symfony/console, symfony/flex et symfony/framework-bundle dans
leurs versions respectives (pour Symfony 6.4)

— dépendance sur la bibliothèque symfony/dotenv pour l’environnement de
développement

— configuration de l’auto-loader pour associer l’espace de noms App au
contenu du sous-répertoire src/ de l’application (les codes source PHP
écrites par le développeur s’y trouveront).

— etc.
En général, on s’inspire d’une documentation, ou on utilise un générateur, pour
ne pas avoir à comprendre tous ces détails.
Voyons maintenant comment on l’utilise.

4.2.3 Installation des bibliothèques

1. Le développeur lance :

$ composer install

2. Analyse des règles contenues dans composer.json

3. Résultat est téléchargé dans vendor/

autoload.php
autoload_runtime.php
bin/
composer/
doctrine/
easycorp/
friendsofphp/
laminas/
masterminds/
monolog/
nikic/
psr/
symfony/
twig/

Poly étudiant 14

CSC4101 2025-2026 CM 1

Loading composer repositories with package information
Updating dependencies (including require-dev)
Package operations: 20 installs, 0 updates, 0 removals

- Installing symfony/flex (v1.0.89): Downloading (100%)
Enable the "cURL" PHP extension for faster downloads

Prefetching 19 packages
- Downloading (100%)

- Installing symfony/polyfill-mbstring (v1.9.0): Loading from cache
- Installing symfony/console (v4.1.3): Loading from cache
- Installing symfony/routing (v4.1.3): Loading from cache
- Installing symfony/polyfill-ctype (v1.9.0): Loading from cache
- Installing symfony/http-foundation (v4.1.3): Loading from cache
- Installing symfony/event-dispatcher (v4.1.3): Loading from cache
- Installing psr/log (1.0.2): Loading from cache
- Installing symfony/debug (v4.1.3): Loading from cache
- Installing symfony/http-kernel (v4.1.3): Loading from cache
- Installing symfony/finder (v4.1.3): Loading from cache
- Installing symfony/filesystem (v4.1.3): Loading from cache
- Installing psr/container (1.0.0): Loading from cache
- Installing symfony/dependency-injection (v4.1.3): Loading from cache
- Installing symfony/config (v4.1.3): Loading from cache
- Installing psr/simple-cache (1.0.1): Loading from cache
- Installing psr/cache (1.0.1): Loading from cache
- Installing symfony/cache (v4.1.3): Loading from cache
- Installing symfony/framework-bundle (v4.1.3): Loading from cache
- Installing symfony/dotenv (v4.1.3): Loading from cache

Writing lock file
Generating autoload files

Composer construit le graphe transitif des dépendance en partant des 4
dépendances symfony/console, symfony/flex, symfony/framework-bundle et
symfony/dotenv qui ont été mentionnées explicitement dans composer.json, et té-
lécharge les 20 paquetages qui en résultent (dépendances de base du noyau du
framework Symfony).
Le code des différentes bibliothèques téléchargées est alors extrait dans des
sous-répertoires du répertoire vendor/ à la racine du projet.
L’extension Flex pour Composer (symfony/flex) est alors mise à contribution
pour générer certains fichiers utiles au projet (cf. https://github.com/symfony/
flex), si nécessaire (renseigner des valeurs par défaut, etc.).
Composer comporte bien d’autres fonctions, dont certaines seront utilisées plus
tard, comme la création d’un squelette d’application, avec composer create-
project.
Maintenant que tout le code des bibliothèque est présent, voyons comment il est
chargé à l’exécution.

4.3 Chargement des bibliothèques via l’autoloader (optionnel)

Voici le fonctionnement du chargement via l’auto-loader lié à Composer, pour votre culture.
En pratique tout cela à transparent.
Dans l’exemple ci-dessous, le programme PHP index.php utilise l’auto-loader pour charger
les bibliothèques nécessaires à son exécution.
Voici une bibliothèque dont le code est installé dans vendor/symfony/http-foundation/Request.php :

namespace Symfony\Component\HttpFoundation;

...

Poly étudiant 15

https://github.com/symfony/flex
https://github.com/symfony/flex

CSC4101 2025-2026 CM 1

class Request {

et qui est chargée « automatiquement » via ce programme index.php :

<?php

require __DIR__.'/vendor/autoload.php';

...

$request = Symfony\Component\HttpFoundation\Request::createFromGlobals();

Ainsi lorsqu’il utilise une classe comme Symfony\Component\HttpFoundation\Request, celle-ci
est trouvée par l’interpréteur, car présente dans l’espace de noms Symfony\Component\HttpFoundation
que l’auto-loader aura trouvé dans la déclaration d’espace de noms présente dans le fi-
chier source vendor/symfony/http-foundation/Request.php.
Les programmes utilisent des identifiants d’espaces de noms PHP et non le chemin en dur
des fichiers sources, ce qui rend le code maintenable en permettant la restructuration de
l’arbre des fichiers sources des bibliothèques.
Cf. https://www.phptherightway.com/#namespaces.

Poly étudiant 16

https://www.phptherightway.com/#namespaces

CSC4101 2025-2026 CM 1

5 Mettre au point et tester le code

— Langage interprété
— Trouver les bugs avant exécution ?
— Tester (systématiquement)
— IDE (Integrated Development Environment), pour détecter les erreurs quand on
tape le code

Les tests sont particulièrement importants dans un langage interprété comme
PHP.
Avec un langage compilé (comme Java) un grand nombre de problèmes et de
bugs sont identifiés lors de la phase de compilation et doivent être résolus assez
tôt.
Avec un langage interprété, c’est uniquement quand le programme fonctionne
que ceux-ci seront détectés. Mieux vaudrait que ça soit en phase de mise au
point, quand un développeur compétent est disponible, plutôt qu’une fois en
production.
Il est aussi intéressant d’utiliser un éditeur ou un environnement de développe-
ment intégré offrant un support du langage, pour identifier certaines erreurs au
plus tôt.

5.1 Mise au point : affichage

Afficher des traces d’exécution
— print() est votre ami ?
— mais on peut faire mieux !

La programmation avec PHP est souvent très itérative et nécessite de maîtriser
les bonnes pratiques pour la mise au point.
Premier outil pour la mise au point : afficher des traces.
Astuces « débug » sur sortie standard :
— echo / print() : basique, pourvu qu’il y ait une sérialisation en chaîne de
caractères

— print_r() : affichage formaté

echo '<pre>';
print_r($data);
echo '</pre>';

— var_dump() : très détaillé… MAIS attention aux récursions !
Attention, les affichages ne sont pas toujours visibles : capture de la sortie stan-
dard, formatage des réponses HTTP : en-têtes / corps de réponse…
Une astuce pour capturer le formattage de print_r dans une variable :

$affichage = print_r($data, 1);

5.2 dump() dans Symfony

Utiliser dump()

dump($myarray);

Poly étudiant 17

CSC4101 2025-2026 CM 1

Dans les frameworks comme Symfony on verra des outils permettant de mettre
au point plus confortablement, sans ces inconvénients, comme l’utilisation de la
fonction dump().
Symfony nous apportera des fonctionnalités d’environnement de développement
ou tests.

5.3 Environnement de développement local dans Symfony

Ainsi, on utilisera au quotidien, pour la mise au point un serveur Web local.
Il permet de tester le code en direct, en faisant un rechargement automatique des fi-
chiers modifiés.
Il s’accompagera de l’utilisation d’une base de données locale (SQLite) permettant de tes-
ter complètement le fonctionnement de l’application sur l’ordinateur du développeur.

5.4 Tests PHPUnit

— environnement de tests : PHPUnit
— systématiser les tests :
— conformité
— non-régression

— Tester avant de déployer en production
Ne sera pas utilisé dans le cours (faute de temps)

Avoir une démarche de tests bien définie est indispensable Langage interprété
La meilleure technique pour assurer que le code est testé, est de l’accompagner
d’une suite de tests automatisée, qui rend explicites les tests du programme.
Nous n’aborderons pas le domaine des tests dans le présent cours faute de
temps, même si les frameworks comme Symfony apportent un support pour les
tests assez élaboré.
En PHP, c’est l’environnement PHPUnit qui est utilisé. Il fonctionne de façon
très similaire à JUnit de Java, par exemple.
Le sujet des tests sera abordé en détail dans le module optionnel CSC 4102 « In-
troduction au Génie Logiciel Orienté Objets ».

Poly étudiant 18

CSC4101 2025-2026 CM 1

Take away

— PHP moderne
— Syntaxe objet
— Outils du développeur : Composer, dump()

Poly étudiant 19

CSC4101 2025-2026 CM 1

Copyright

Ce cours est la propriété de ses auteurs et de Télécom SudParis.
Cependant, une partie des illustrations incluses est protégée par les droits de
ses auteurs, et pas nécessairement librement diffusable.
En conséquence, le contenu du présent polycopié est réservé à l’utilisation pour
la formation initiale à Télécom SudParis.
Merci de contacter les auteurs pour tout besoin de réutilisation dans un autre
contexte.

Poly étudiant 20

	 Généralités sur le langage PHP
	Langage PHP
	Syntaxe objet
	Installation des outils et bibliothèques
	Mettre au point et tester le code

