Architecture(s) et application(s)
Web

SudParis
Pt At |

.:3, IP PARIS

Télécom SudParis Olivier Berger (TSP)

21/08/2025

CSC4101 - Cours Acces aux données avec
I'ORM Doctrine

CSC4101 2025-2026

ORM Doctrine

Table des matieres

1 L'ORM Doctrine
2 Coder les classes
3 Utiliser les classes du modéle de données

4 Gérer des données de tests

Poly étudiant

12
22

CSC4101 2025-2026 ORM Doctrine

Objectifs de cette séquence

Cette séquence de cours magistral abordera |I'un des outils qui est utilisé dés les premiers
TP, et qu’on utilisera ensuite tout au long du module, I'ORM Doctrine, qui gérera la couche
d’acces aux données dans nos développements en PHP avec Symfony.

Poly étudiant 2

CSC4101 2025-2026 ORM Doctrine

1 L'ORM Doctrine

Cette section présente succinctement les fonctionnalités de I'ORM Doctrine, pour
détailler le fonctionnement des mécanismes qu’on utilise dans le cours, et appro-
fondir des éléments plus avancés.

1.1 Pourquoi une base de données?

Exécution typique d’une application Web

1. Arrivée requéte HTTP
— L'application démarre
— Charge des données en mémoire

2. Elle traite la requéte
— Impact sur données en mémoire

3. Fin
— Enregistre les données mises a jour
— Envoi réponse HTTP
— L'application s’arréte

i Application Base de données

u read previous state

save current state

Utilisateur

start

Figure 1 - Vie d’une appli Web (over-simplifiée)

Mais aussi interaction entre utilisateurs sur données partagées
Programmer :
— Modéle de données en mémoire (a chaud) :
orienté objet :
— UML
— PHP (objet)
— Modéle de données en base de données (a froid, persistant) :
relationnel :

Poly étudiant 3

CSC4101 2025-2026 ORM Doctrine

app Cl 1

e

<—> | app CL 2

server l I

Client

Figure 2 - Accés concurrent au RGBD

— entités + associations
— Systéme de Gestion de Base de données (SGBD) + SQL

1.2 Role d’'un ORM

ORM Object Relational Mapper
— Principe ORM
— Manipuler les données de I'application via des classes / objets
— Implémentation du Modéle de données applicatif (en mémoire)
— Persistence dans un SGBD
— Conversion d'un modéle objet en un modéle relationnel

id: 42
title: apprendre PHP
completed: false

3304

42 apprendre PHP 0 2023/08/0 2023/08/2
43 |apprendre les | 1 |2023/07/2|2023/08/1

id title co.. created updated
|41 [devenir un pro| 6 |2023/07/2|2023/08/0
created: 2023/08/01
updated: 2023/08/21 _

auTJ

11

Figure 3 - Conversion objet - relationnel

Object Relational Mapping peut se traduire par Mapping (en bon franglais - sic)
ou conversion objet-relationnel.

En principe, vous maitrisez le modéle relationel, qui est un pré-requis de ce mo-
dule. De méme pour le modéle objet.

Par contre, la conversion objet-relationnel a été étudiée, mais probablement pas
approfondie, d’ou la nécessité de I'approfondir ici.

1.2.1 Doctrine, I'ORM standard en PHP

https://www.doctrine-project.org/projects/orm.html

Poly étudiant 4

https://www.doctrine-project.org/projects/orm.html

CSC4101 2025-2026 ORM Doctrine

— composant standard applis PHP

— bien intégré avec Symfony :
— gestion modéle de données
— intégration avec formulaires saisie données
— assistant génération de code dans Symfony

Doctrine est le composant d’ORM standard qui est intégré dans Symfony. Il gére
I'acces et la persistance des données de notre application en base de données.
Il apporte de nombreuses fonctionnalités, en particulier :

— la génération d’une base de données relationnelle, a partir du Modéle ob-
jet défini par le programmeur dans les classes PHP. En général, on n‘a pas
besoin d’écrire quoi que ce soit en langage SQL, ou de s’occuper des dé-
tails de tel ou tel SGBD, quand on développe une application simple avec
Symfony. Doctrine s’occupe « de tout » pour nous.

— I|'articulation automatique avec les formulaires de saisie de données
de Symfony, pour le support du typage des données (vérification de
contraintes de saisie, sécurité, etc.)

Doctrine est un des composants de Symfony (http://symfony.com/doc/current/
doctrine.html), mais il est aussi utilisable dans des applications PHP, en dehors
de Symfony (http://www.doctrine-project.org/projects/orm.html).

La plupart des programmes PHP écrits avec Symfony qui seront étudiés dans ce
cours utiliseront Doctrine. Il est donc utile de mieux savoir comment fonctionne
Doctrine.

1.3 Concevoir les classes du modeéle

Conception orientée objet
— Classes (PHP)
— Propriétés mono-valuées des classes :
types de bases + références a des instances d’autres classes
— Propriétés multi-valués
Collections d’objets (ou de références d’objets)

La conception orientée objets n’est pas un domaine trivial. On peut mettre a
profit les connaissances en modélisation UML, par exemple.

Dans le module on essaiera de traiter uniguement des structures de données re-
lativement simples.

On étudiera de facon plus avancée la Conception Orientée Objet dans le module
CSC4102 « Introduction au Génie Logiciel Orienté Objet ».

Examinons le modéle orienté objet d’une application simple, pour rappeler des
éléments de vocabulaire.

1.3.1 Exemple modéle de données objet Todo

Modéliser des taches : classe Todo
Propriétés mono-valuées :

— title : chaine

— completed : booléen

— created, updated : dates

class Todo

{
private string $title;
private bool $completed;
private DateTime $created;
private DateTime $updated;

Modéliser des projets : classe Project
Propriétés mono-valuées :

Poly étudiant 5

https://www.doctrine-project.org/projects/orm.html
http://symfony.com/doc/current/doctrine.html
http://symfony.com/doc/current/doctrine.html
http://www.doctrine-project.org/projects/orm.html

CSC4101 2025-2026 ORM Doctrine

— title : chaine
— description : chaine

class Project

{
private string $title;
private string $description;

Association 1-n entre Project et Todo
En UML :

Project

Todo

— taches d’un projet (multi-valué) : Collection
— projet d’une tache : référence

En PHP :
— les taches d‘un projet (Project: :todos)

class Project
{
private string $title;
private description $completed;

private array $todos = array();
— le projet d’une tache (Todo: :project)

class Todo

{
private string $title;
private bool $completed;
private DateTime $created;
private DateTime $updated;

private Project $project;

En PHP, les types de base des propriétés mono-valuées sont disponible « de
base », comme les chaines, les entiers, ou les booléens. Laissons de coté les
dates qui sont plus complexes (vu les soucis d’internationalisation, notamment).
Par contre, comme pour la programmation en Java, il est nécessaire de com-
prendre comment sont gérées les associations entre instances de différentes
classes, pour les implémenter via des propriétés.

En PHP objet, la notion de référence existe naturellement, de facon assez simi-
laire a ce qu’on trouve dans d’autres langages comme Java.

Une instance de Todo aura donc une propriété project (par convention

Todo: :project) qui pourra référencer une instance de Project, ou valoir null si
elle n’est pas définie.

Pour ce qui concerne les collections (qui permettent de gérer des propriétés
multi-valuées), la standardisation en PHP a été progressive, et on va s’appuyer,
dans ce cours, sur les structures de données objet fournies par Doctrine, comme
des « tableaux » / listes comme ArrayCollection.

1.3.2 Raffiner

Quelle est la « force » de |'association?

Poly étudiant 6

https://www.doctrine-project.org/projects/doctrine-collections/en/stable/index.html

CSC4101 2025-2026 ORM Doctrine

— association : tadches sans projet possibles?
— composition : pas de tache sans projet?
Pourra étre approfondi dans CSC4102 « Introduction au Génie Logiciel Orienté Objet »

1.4 Vous étes en terrain connu

Vous maitrisez déja :
— Conception du modeéle des données en Objet (comme découvert en CSC3101)
— Programmation objet en PHP (assez proche de Java, en fait, méme si pas com-
pilé) -
— références
. — collections
A 'exécution, sous le capot : génére des requétes SQL dans SGBD relationnel (appris en
CS(C3601)... mais pas besoin de les programmer

Le principe d'un ORM Object Relational Mapper est de permettre de concevoir
une application dans le paradigme objet, indépendamment de la technologie de
bases de données sous-jacente.

La plupart des concepts que vous connaissez, comme les références vers des
objets et les associations se retrouvent dans le modéle objet de PHP.

Les structures de données disponibles en PHP pour gérer des collections d’ob-
jets sont légérement différentes de celles d’autres langages (p. ex. Java), mais
reposent en général sur des tableaux (équivalents a des listes) ou des tableaux
associatifs (dictionnaires). On verra que Doctrine apporte des classes particu-
lieres pour les structures de données, mais leur manipulation repose en grande
partie sur la syntaxe de manipulation des tableaux déja vue dans I'apprentissage
de la syntaxe PHP en autonomie.

L'ORM réalise les opérations nécessaires pour assurer la conversion du modéle
objet (références, associations, collections) en un modéle relationnel, pour
permettre un stockage persistant, et donc l'intégration avec d’autres applications
(via le langage SQL).

1.4.1 Utiliser 'ORM

— Ne pas écrire les requétes SQL de chargement / modification

— Programmer en objet avec Doctrine

— L'ORM (Object Relational Mapper) détecte les données nouvelles ou modifiées et
génere le SQL sous le capot

Le composant d’ORM permet de manipuler les données de I'application via des
objets (instances de classes PHP).

Le programmeur réalise donc I'implémentation du Modéle applicatif grace a des
structures de données objet instanciées en mémoire, quand |'application s’exé-
cute.

Sous le capot, 'ORM attribue des identifiants qui sont nécessaires au fonctionne-
ment du modéle physique des données (dans le SGBD relationnel), alors que les
objets PHP sont manipulés uniquement par leur référence (adresse mémoire).

1.4.2 Oublier SQL?

— Pas toujours si simple
— Réviser un peu CSC3601 « Modélisation, bases de données et systémes d’informa-
tion » ?
Comprendre pour debugger si tout ne marche pas comme prévu automagiquement.

Poly étudiant 7

CSC4101 2025-2026 ORM Doctrine

Le développeur Symfony n’est pas obligé d’apprendre SQL, s’il utilise Doctrine.
Mais Doctrine n’est pas magique pour autant. Il faut notamment bien com-
prendre la syntaxe des attributs, et mieux vaut bien connaitre les bases du
modéele relationnel pour ne pas faire n‘importe quoi.

1.4.3 Exemple : références traduites en clés étrangéres
Examinons comment se traduisent les références entre entités associées

Un objet Todo Un objet Project

id: 42 id: 3
title: apprendre PHP description: CSC4101
completed: false

created: 2023/08/01
updated: 2023/08/21
project:

| Doctrine |

| ¥

Table: todo Table: project

id title co.. created updated project_idid description

41 [devenir un prol 0 |2023/67/2 1 [csc3101
42 apprendre PHP 0 2023/08/0 2023/08/2 3 | 1 |csc3601
43 |apprendre les | 1 |2023/07/2|2023/08/1|3 ““r}‘

Figure 4 - Traduction des références en clés étrangeres

Les propriétés Project: :todos et Todo: :project qui réalisent |'association
OneToMany/ManyToOne entre un projet et ses taches sont gérées, en mémoire, avec
une collection, et respectivement une référence.

Mais si on s’intéresse au stockage en base de données relationnelle, on ne peut
stocker de propriétés multi-valuées dans le modeéle relationnel. Impossible donc
de stocker la collection des instances de la propriété Project::todo dans une co-
lonne de la table project. On pourra seulement stocker la référence d’une tache
a son projet via la clé étrangére project_id de todo qui sera une réfénce a l'iden-
tifiant id de project. Le chargement par jointure permettra de reconstituer la
collection, a la demande.

Si vous ne maitrisez pas cet aspect du modele relationnel, vous risquez d’avoir
du mal a comprendre certains soucis de mise au point, notamment sur la modifi-
cation des données, et la persistence de ce genre d’associations.

Poly étudiant 8

CSC4101 2025-2026 ORM Doctrine

2 Coder les classes

Cette section présente succinctement la facon dont on peut coder en PHP les
classes du modele de données de |'application, avec I'aide de Doctrine

2.1 Codage des entités du modele de données

Observons comment a été mis en ceuvre le modeéle des données de I'application
« fil-rouge » Todo.

2.1.1 Emplacement du code PHP

Classe de I'entité Todo :
— classe PHP Todo
— fichier source : src/Entity/Todo.php
— espace de nommage : module App\Entity\Todo

Les classes du modéle de données sont a coder dans un répertoire particulier du
projet, et avec un espace de hommage particulier, par convention.

Notons qu’il n‘est pas obligatoire de coder « a la main », mais qu’on utilisera
aussi beaucoup des générateurs de code, pour aller plus vite et éviter les er-
reurs.

2.1.2 Classe PHP « naive »

class Todo

{
private string $title;
private bool $completed;

public function getTitle() {
I oo
public function setTitle($title) {
0 oo
I ooc

Pas de typage des propriétés, en « PHP basique », mais possible en PHP moderne (et ob-
jet).

Il n'y a pas de typage strict des propiétés, en PHP, comme dans d’autres lan-
gages interprétés. Mais c’est fortement recommandé dans un style de program-
mation moderne, y compris en objet.

Une fois cette classe disponible dans I'application, on peut gérer des instances
de la classe en mémoire, par exemple en créant des objets, en les ajoutant dans
un tableau, en parcourant ce tableau, etc.

Chaque objet est identifié par sa référence en mémoire.

Dans ce qui précéde, le modéle objet de PHP ressemble fort a ce que vous
connaissez déja en Java.

2.1.3 Classe PHP documentée
Docblocks PHP « standard » (sans ORM) :
class Todo {
/*%

* Qvar string task title

*/

Poly étudiant 9

CSC4101 2025-2026 ORM Doctrine

private string $title;

/%%

* Qvar bool Is the task completed/finished.
*/

private bool $completed;

On voit que le programmeur a ajouté des annotations sous forme de « doc
blocks » dans les « commentaires », qui ne sont pas utilisés par PHP en premiére
instance, mais sont destinés a des outils comme PhpDocumentor.

Cela permet d’assister d’autres programmeurs qui utilise cette classe, s'ils uti-
lisent des outils comme un éditeur de texte moderne ou un IDE comprenant ces
annotations PHPDoc.

Le format de ces annotations DocBlocks de PHPDoc n’est pas un simple com-
mentaire PHP : il doit commencer par « /*x », au lieu d’un simple « /x» (cf. What
does a DocBlock look like ?)

On retrouve la méme syntaxe générale que pour Java avec JavaDoc.

2.2 Introduction de la persistance avec Doctrine

Sur la base de ce code objet standard PHP, on ajoute des méta-données qui in-
troduisent des contraintes sur les classes et leurs propriétés, que Doctrine sait
exploiter pour réaliser ses mécanismes d’ORM.

2.2.1 Attributs PHP
Ajout d’annotations, méta-données pour Doctrine
use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity]
class Todo

{
#[ORM\Id, ORM\GeneratedValue, ORM\Column]
private int $id;

#[ORM\Column(length: 255, nullable: true)]
private string $title;

#[ORM\ManyToOne (targetEntity: Project::class,
inversedBy: 'todos')]
private Project $project;

0l oo
}
#[ORM\Entity]
class Project
{
#[0RM\Id, ORM\GeneratedValue]
private int $id;
#[ORM\Column(type: "text", nullable: true)]
private string description;
#[ORM\OneToMany (targetEntity: Todo::Class, mappedBy: 'project')]
private $todos;
Dlooo
}

Poly étudiant 10

http://docs.phpdoc.org/getting-started/your-first-set-of-documentation.html#what-does-a-docblock-look-like
http://docs.phpdoc.org/getting-started/your-first-set-of-documentation.html#what-does-a-docblock-look-like

CSC4101 2025-2026 ORM Doctrine

Les attributs définissent des régles de typage des valeurs des propriétés, ainsi
que la définition de propriétés multi-valuées pour gérer les associations entre
instances des classes du modéle comme étant des «tableaux » (listes d’éléments
itérables).

Elles permettent aussi de définir des contraintes : propriété obligatoire, cardina-
lités des associations, compositions, etc.

Cf. Documentation Doctrine pour I'ensemble des fonctionnalités sur le mapping
des propriétés des objets.

Notons en particulier, ici, la description d‘une relation OneToMany permettant de
gérer une association.

Une fois ces différentes méta-données ajoutées au code, Doctrine peut fonction-
ner.

Tant qu’on travaille en mémoire, sur des structures de données PHP, ces anno-
tations entrent marginalement en lighe de compte.

Mais quand on souhaite charger ou sauvegarder dans la base de données les ob-
jets présents en mémoire, Doctrine fait le lien entre les objets PHP en mémoire
et une base relationnelle, via la génération de requétes SQL.

2.3 Générateur de code make:entity

Asssistant générateur de code : make:entity
Abus fortement recommandé!

symfony console make:entity

Class name of the entity to create or update (e.g. DeliciousPopsicle):
> Project

created: src/Entity/Project.php
created: src/Repository/ProjectRepository.php

Entity generated! Now let's add some fields!
You can always add more fields later manually or by re-running this command.

New property name (press <return> to stop adding fields):
> title

Field type (enter 7 to see all types) [string]:
>

Field length [255]:
>

Can this field be null in the database (nullable) (yes/no) [no]:
>

updated: src/Entity/Project.php
[...]

Success!

Next: When you're ready, create a migration with symfony console make:migration

Poly étudiant 11

http://docs.doctrine-project.org/projects/doctrine-orm/en/3.2/reference/basic-mapping.html#property-mapping

CSC4101 2025-2026 ORM Doctrine

3 Utiliser les classes du modele de données

Voyons maintenant la fagon dont on peut utiliser ces classes du modele de don-
nées, dans un projet Symfony.

On va examiner comment fonctionnent les mécanismes de Doctrine pour déclen-
cher le chargement des données depuis la base de données.

On verra plus tard, bien plus en détails, les fonctions permettant de sauvegarder
les données de I'application.

3.1 Programmer le chargement en mémoire

Intéressons-nous d‘abord au chargement des Collections d’instances, qui cor-
respond au SELECT ... FROM ..., ou on doit allouer une nouvelle instance d’une
classe, pour chaque occurrence du résultat de la requéte.

3.1.1 Le repository d’instances

On geére le chargement des données grace a un « générateur d'objets » (le Repository),
associé a une classe Doctrine.

use Doctrine\ORM\Mapping as ORM;
use App\Repository\TodoRepository;

#[ORM\Entity(repositoryClass: TodoRepository::class)]
class Todo

{
#[0RM\Id, ORM\GeneratedValue, ORM\Column]
private int $id;

Listing 1 : Extrait de src/Entity/Todo.php

Le repository est codé dans une classe, ici TodoRepository (dont le code est pré-
sent dans src/Repository/TodoRepository.php).

Cette classe utilitaire est associée a notre entité du modéle de données Todo via
I"attribut ORM\Entity.

C’est un générateur d’instances d’une classe. C’est lui, dans Doctrine, qui sait
générer des instances, ou des collections d’instances de nos classes PHP.

C’est par son intermédiaire qu’‘on va charger les données depuis la base relation-
nelle.

3.1.2 Chargement d’une collection d’instances (£findA11(0))
Utilisation pour charger toutes les instances de Todo :

La méthode findA11() des repositories Doctrine permet ainsi de charger, dans
une collection en mémoire, toutes les instances d’une classe, qui corres-
pondent a toutes les données correspondantes en base de données.

Avec un ORM comme Doctrine, on raisonne en objet. Plus besoin de faire un
SELECT * from todo; en SQL et d’allouer manuellement des instances de Todo en
mémoire, et d'y recopier le résultat de chaque ligne du résultat du SELECT. C'est
le job d’un repository, et on s’appuie sur ses méthodes pour faire cela.

Poly étudiant 12

CSC4101 2025-2026 ORM Doctrine

use App\Entity\Todo;

0o
protected function execute()
{

// récupére une liste toutes les instances de Todo
$todos = $this->todoRepository->£findAll();

foreach($todos as $todo)
{

//...
}

Listing 2 : Extrait de ListTodosCommand . php

3.1.3 Acces au repository de Doctrine

use App\Entity\Todo;
use App\Repository\TodoRepository;
/...
class ListTodosCommand extends Command <{
/%%
* Ovar TodoRepository data access repository
*/
private $todoRepository;

public function __construct(ManagerRegistry $doctrineManager) {
$this->todoRepository = $doctrineManager
->getRepository(Todo: :class);
parent::__construct();

3

protected function execute(): int {
// fetches all instances of class Todo from the DB
$todos = $this->todoRepository->findA1l();
/...

Poly étudiant 13

CSC4101 2025-2026 ORM Doctrine

Ce code est un peu complexe, car il met en ceuvre des patrons de conception
avancés (Symfony est un framework moderne, complexe, si on essaye d’en
comprendre tous les détails des le début). Rassurez-vous : on essaye de ne pas
réinventer la roue, et on utilise des générateurs de code, ou bien on s’inspire de
la documentation.

On pourrait écrire le début de ce code de fagon moins condensée, pour mettre
en évidence les différentes composantes de Symfony et Doctrine mises en
ceuvre.

Essayons quand méme de comprendre. Accrochez-vous :

1. ListTodosCommand est la classe d’'une commande que nous avons codé,
dans src/Command/ListTodosCommand.php, qui hérite d’une classe Symfony,
Command ;

2. nous surchargeons le constructeur de Command pour recevoir en argument,
une instance du ManagerRegistry de Doctrine (inutile d’approfondir ce mé-
canisme de la tuyauterie Symfony pour l'instant) :

— cet utilitaire de Doctrine nous permet de récupérer le repository d’'une
classe de notre modele de données : ->getRepository(Todo: :class).

— on garde la référence de ce repository dans une propriété de notre
classe : ListTodosCommand: :todoRepository (de type TodoRepository),
pour pouvoir le récupérer lorsque la méthode execute() sera appelée

3. une fois que la commande est appelée, cette propriété nous permet d’ap-
peler la méthode findA11() du repository de Todo.

Ce mécanisme d’injection de dépendances, permet a une classe d’accéder a des
services de Symfony depuis son constructeur, et on le retrouvera a différents
endroits.

C’est un peu complexe, mais ¢a fonctionne. Méme si on ne comprend pas tous
les détails de I'usine a gaz qu’est un cadriciel moderne comme Symfony, on peut
faire confiance a la documentation pour nous dire comment faire. Et surtout, le
code devient relativement compact a écrire.

3.2 Chargement depuis la base de données (find...())

Chargement d'un seul objet depuis la base de données.
3 variantes :

— par identifiant

— par critéres de sélection

— par un valeur d’une propriété (raccourci)
Encore grace a la méme classe repository.

3.2.1 Chargement via l'identifiant : find($id)

$todo = $this->todoRepository->find($id);

génere, via Doctrine :
SELECT * FROM ... WHERE ID=[$id]

Attention : les identifiants sont uniques, mais un détail d'implémentation (valeur générée
par le SGBD).

Cette fois on accéde directement a une instance par son identifiant find($id).
Mais le plus souvent, cet identifiant interne a la base de données reste caché
dans les mécanismes internes de |'application.

Poly étudiant 14

https://symfony.com/doc/current/service_container/injection_types.html#constructor-injection

CSC4101 2025-2026 ORM Doctrine

3.2.2 Chargement par sélection sur des propriétés (findOneBy())

Chargement d’une instance de Todo, étant donnés un titre et un état terminé (extrait de
ShowTodoCommand . php) :

$todo = $this->todoRepository->findOneBy(
['title' => $title,
'completed' => $completed]);

génere une requéte SQL style :

SELECT ... FROM todo
WHERE title = [$title]
AND completed = [$completed]
LIMIT 1

On utilise la méthode findOneBy du repository, en lui passant en argument un
tableau contenant les différents critéres de sélection/restriction de la requéte a
faire dans la base de données.

Vous verrez alors, dans le log, des requétes du type :

[2018-08-07 10:14:47] doctrine.DEBUG: SELECT tO.tid AS tid_1, tO.title AS title_2, tO.completed AS c

Doc Doctrine : Documentation Doctrine ORM / Working with Objects / By Simple
La documentation indiquée dans le lien ci-dessus permet de retrouver les diffé-
rents critéres qu’on peut passer aux méthodes de chargement d’instances, ou de
collections d’instances.

Globalement, tous les critéres de sélections qu’on utilise classiqguement dans le
modéele relationnel sont utilisables, typiquement pour filtrer sur des valeurs de
propriétés particuliéres.

3.2.3 Sélection via findBy... suivi du nom de propriété

Méthodes findBy* nommeées d’apres les propriétés de la classe (magic finders) :
Exemple :

$todos = $this->todoRepository->findByCompleted(false);

donne :
WHERE completed = 0;

Avec lI'appel d'une méthode « magique » du type findByPropriété(valeur), cette
méthode charge « automagiquement » les instances de la classe ayant la pro-
priété « Propriété » (issue du nom de la méthode) a la valeur « valeur »
Doctrine a généré la clause WHERE SQL correspondant a la valeur de la propriété
completed, pour le findByCompleted().

Notons que ces « magic finders” sont assez peu documentés. Mais on trouve une
indication dans la documentation de I’API Doctrine sous l'intitulé sibyllin »Adds
support for magic method calls.”.

Une méthode _call() des repository permet d’intercepter I'appel aux méthodes
et de détecter que la méthode findByCompleted(false) correspond en fait a un
appel a findBy(array('completed' => false))

3.2.4 Méthodes spécifiques de votre modeéle applicatif

Les classes repository sont générées avec des fonctionnalités basiques.
Si besoin, on compléte le repository pour ajouter des requétes spécifiques a notre contexte
applicatif :

Poly étudiant 15

https://www.doctrine-project.org/projects/doctrine-orm/en/3.2/reference/working-with-objects.html#by-simple-conditions
https://www.doctrine-project.org/projects/doctrine-orm/en/3.2/reference/working-with-objects.html#by-simple-conditions

CSC4101 2025-2026 ORM Doctrine

class TodoRepository extends ServiceEntityRepository
{
0 coa
public function findLatest($page)
{
M ooo
}

Si besoin, le programmeur dispose aussi d’un langage de requétage proche
de SQL, dans Doctrine. Cf. https://symfony.com/doc/current/doctrine.html#
querying-with-the-query-builder

Mais la plupart du temps, pour des applications simples, on n’en aura pas be-
soin, et on exprimera les algorithmes dans une syntaxe objet, avec ces mé-
thodes des repositories Doctrine.

3.3 Création de la base de tests

Voyons comment fonctionnent les outils de Doctrine qui nous permettent de
créer une base de données de tests.

3.3.1 Attention : en dév ou en prod
Outils a utiliser dans env. de développement!

On n’étudie pas ici ce qui serait utilisé lors de la mise en production d’une appli-
cation, car pour l'instant, notre besoin est de tester I'application en environne-
ment de développement.

3.3.2 Base existante, ou base générée

Qui gére la base de données?
— brancher Symfony sur une base existante
— ou générer une base de données a partir du modéle de données de notre applica-
tion Symfony
Dans les deux cas Doctrine fait le job
Dans notre contexte, on est dans le second cas.

A chaque évolution de notre modéle de données, suite & une modification du
code PHP, on re-teste en re-générant une nouvelle base de données a partir du
nouveau code.

3.3.3 Génération d’une BD a partir du code

— Recherche des attributs Doctrine 0RM dans code des classes PHP
— Génération requétes SQL de création du schéma (SQL /modeling language)
— Spécificités SGBD cible (SQLite, PostgreSQL, MariaDB, ...)

CREATE TABLE todo (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
title VARCHAR(255) NOT NULL,
completed BOOLEAN NOT NULL);

Listing 3 : Schéma généré pour SQLite (symfony console doctrine:schema:create -vvv) :

Poly étudiant 16

https://symfony.com/doc/current/doctrine.html#querying-with-the-query-builder
https://symfony.com/doc/current/doctrine.html#querying-with-the-query-builder

CSC4101 2025-2026 ORM Doctrine

Doctrine sait examiner le code des classes PHP, pour y découvrir les attributs qui
le concernent (mécanisme d’instrospection PHP).

L'ORM en déduit les opérations a mettre en ceuvre pour gérer la persistance des
données, quand le programmeur en aura besoin.

Doctrine peut ainsi générer, en fonction du type de SGBD utilisé dans le projet,
un schéma de données relationnel.

Différents types de bases de données (y compris NoSQL, clé-valeurs) sont sup-
portés avec Doctrine, méme si nous utiliserons uniquement le modeéle relationnel
et SQLite, dans le cours.

3.3.4 Commandes de re-génération de la base de données
1. Configurer quelle base de données cible (SQLite, MySQL, PostGreSQL, ...) : variable
dans le fichier .env
2. Exécuter :

symfony console doctrine:database:create
symfony console doctrine:schema:create

La base de données (fichier SQLite) est créée dans le répertoire courant, avec des tables
vides.

C’est la configuration de la base de données cible (variable DATABASE_URL dans le
fichier .env) qui indiqgue comment générer le modéle concret, avec une syntaxe
SQL peut varier d’'un SGBDR a l'autre.

3.3.5 Structure du schéma
Voir le schéma de données généré dans la base :
$ bin/console doctrine:schema:create --dump-sql

Exemple :

CREATE TABLE project (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
title VARCHAR(255) NOT NULL,
description CLOB DEFAULT NULL);

CREATE TABLE todo (
tid INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
project_id INTEGER DEFAULT NULL,
title CLOB DEFAULT NULL,
completed BOOLEAN NOT NULL,

CONSTRAINT FK_CD826255166D1F9C FOREIGN KEY (project_id)
REFERENCES project (id) NOT DEFERRABLE INITIALLY IMMEDIATE);

Listing 4 : Contrainte d'intégrité référentielle pour clé étrangére project_id, pour matéria-
liser I'association 1-N, avec SQLite

C’est la configuration de la base de données cible qui permet de générer le mo-
dele concret pour la sérialisation des données dans un SGBDR.

La syntaxe SQL des contraintes d’intégrité référentielle change en effet, selon le
SGBD.

3.3.6 Relations m-n ManyToMany

Exemple : étiquettes (Tag) sur des taches (Todo)

Poly étudiant 17

CSC4101 2025-2026 ORM Doctrine

CREATE TABLE todo (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
L)
CREATE TABLE tag (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
..);

-— Génération d'une table de relation
CREATE TABLE todo_tag (
todo_id INTEGER NOT NULL,
tag_id INTEGER NOT NULL,
PRIMARY KEY(todo_id, tag_id),
CONSTRAINT FK_D767AOBAEA1EBC33
FOREIGN KEY (todo_id)
REFERENCES todo (id),
CONSTRAINT FK_D767A0BABAD26311
FOREIGN KEY (tag_id)
REFERENCES tag (id));

Pour les relations m-n (configurées par I'annotation ManyToMany), Doctrine génére

une table de relation dédiée, qui groupe les clés étrangéres des différents rela-
tions concernées.

Par exemple, ici, pour une association entre taches et étiquettes (classe Tag du
modeéle de données), on obtient une table dont les seules colonnes sont les clés
étrangeres des deux tables todo et tag, qui constituent une clé primaire compo-
site.

3.4 Programmer la modifications des données

Une application Symfony effectue en général des modifications des données,
qu’il faut donc sauvegarder, avant l'arrét de I’'exécution.
Voyons comment on programme cela dans notre code PHP.

3.4.1 Objet + ORM

Sauvegarder les ajouts / suppressions / modifications
Deux étapes :

1. la création, modification ou suppression d‘instances, en mémoire
2. la synchronisation entre le nouvel état obtenu et le contenu de la BD

C'est le rble de I'entity manager (em) de I'ORM Doctrine d’effectuer cette synchronisation.

L'ORM sait charger les données, et gérer les modifications également.
On supporte alors I'ensemble des opérations CRUD sur les données du modele
de l'application :
— Create (création)
— Request / Retrieve (chargement)
— Update (modification)
— Delete (suppression)
On effectue des manipulations en codant en PHP objet, encore une fois.

3.4.2 Création et sauvegarde d’une nouvelle instance

public function createAction(ManagerRegistry $doctrine)

{
$project = new Project();
$project->setTitle('CSC4101');
$project->setDescription("Architectures et applications Web");

// entity manager
$entityManager= $doctrine->getManager();

Poly étudiant

18

CSC4101 2025-2026 ORM Doctrine

// indique a Doctrine que vous aimeriez éventuellement
// sauvegarder ce Projet (mais pas encore de requéte)
$entityManager->persist($project);

// exécute effectivement la sauvegarde (ex. la requéte INSERT)
$entityManager->flush();

// L'identifiant est enfin renseigné (généré par le SGBD)
return new Response("Sauvegardé le projet d'id ".
$project->getId());

persist () permet de « tagger » des instances qui ont été modifiées : nouvelles,
modifiées ou a supprimer.

Les instances ont été modifiées en mémoire seulement, pour l'instant. Elles sont
en attente de sauvegarde.

Ce n’est qu’a I'exécution du flush() que Doctrine effectuera réellement les re-
quétes de suppression effectives (en SQL), en parcourant toutes les données
ainsi « taggées » et en vérifiant ce qui doit étre fait : INSERT, UPDATE, ou DE-
LETE.

3.4.3 setter pour collection ...ToMany

class Project

{
#[0RM\OneToMany (targetEntity: Todo::Class, mappedBy: 'project')]
private $todos;

public function addTodo(Todo $todo) {
if ('$this->todos->contains($todo)) {
$this->todos->add($todo);
$todo->setProject ($this);
}
//...
}

public function removeTodo(Todo $todo) {
if ($this->todos->contains($todo)) {
$this->todos->removeElement ($todo) ;
// set the owning side to null
// (unless already changed)
if ($todo->getProject() === $this) {
$todo->setProject (null);
}

Le code ci-dessus est celui généré par make:entity.

Pour une collection d‘instances liées comme Project::todo, il y @ deux opérations
de modifications qu’on effectue classiquement : ajout ou suppression d’un élé-
ment dans la collection.

3.4.4 Qui sauvegarder a l'ajout, pour les entités liées?
OneToMany entre Project et Todo

class Project
{
public function addTodo(Todo $todo): self
{
if ('$this->todos->contains($todo)) {
$this->todos->add($todo);
$todo->setProject ($this);
}

return $this;

Poly étudiant 19

CSC4101 2025-2026 ORM Doctrine

Attention : qui est modifié (pour le persist() ultérieur)?

Un objet Todo Un objet Project

id: 42 id: 3
title: apprendre PHP description: CS5C4101
completed: false

creatad: 2023/08/01
updated: 2023/08/21
project:

| Doctrine |

Table: todo Table: project

id title co.. created updated project_id[llid description

41 [devenir un pro| 6 [2023/67/2(2623/08/013 | |1 [csc3lel
42 apprendre PHP O 2023/08/0 2023/08/2 3 A 1 {C5C3601
43 |apprendre les | 1 [2023/07/2|2023/08/1|3 r} 3 (504101

Figure 5 - Rappel du mapping d’une référence 1-N

Supposons qu’on a ajouté une nouvelle Todo @ un Project.

Le projet déja présent a-t-il besoin d’étre modifié¢, dans la base de données?
La collection des Todos du Project, une relation /OneToMany, est gérée en mé-
moire via Project: :todos.

A I’ajout en mémoire, cette collection est bien modifiée.

Mais par rapport a la base de données relationnelle, il s’agit d’'une propriété
multi-valuée calculée, qui n’est pas stockée en base de données (cf. diagramme
ci-dessus).

L'instance de projet présente en base n’est effectivement pas modifié : dans le
schéma relationnel, ce sont les Todos contiennent une référence a leur projet.
Le persist () devra donc opérer sur la Todo.

Il sera donc inutile de faire un persist() sur l'instance du Project.

3.4.5 Suppression pour les entités liées
Code généré par |'assistant make:entity :

class Project

{
public function removeTodo(Todo $todo): self
{
if ($this->todos->contains($todo)) {
$this->todos->removeElement ($todo) ;
// set the owning side to null
// (unless already changed)
if ($todo->getProject() === $this) {
$todo->setProject (null);
}
}
return $this;
}
Persist ?

Possibilité gestion automatique des associations

Poly étudiant 20

CSC4101 2025-2026 ORM Doctrine

Comme dans le cas de I'ajout, pour la suppression, on peut se demander éga-
lement quelles instances modifiées sont effectivement concernées par le mar-
quage dy persist().

Heureusement, il existe un moyen d’automatiser les sauvegardes.

3.4.6 Propagation du persist() en cascade
Propagation en cascade :

#[OneToMany(... cascade: ['persist', 'remove'] ...)]

$todo = new Todo();
$project->addTodo ($todo)

$entityManager->persist($project);

Listing 5 : Exemple de code

Sauvegarde de ses todos modifiés

Si on définit une option cascade pour I'attribut OneToMany de Doctrine, on peut
alors gérer les sauvegardes en cascade, par transitivité, en parcourant les col-
lections automatiquement. De méme en cas de suppression.

3.4.7 Suppression des instances orphelines

Propriété orphanRemoval :

#[OneToMany (... cascade: ['persist'], orphanRemoval: true)]

$todo = ...
$todo->setProject (null);

$entityManager->persist($todo) ;

Listing 6 : Exemple de code

Suppression en base
En cas de doute : vérifier les requétes générées (dans I'outil Doctrine de la barre d’outils
Symfony, ou dans les /ogs)

De plus, si on définit I'option orphanRemoval pour l‘attribut OneToMany on obtient
une suppression automatique des instances d’entités faibles n‘ayant plus d’asso-
ciation vers l'entité forte.

De facon générale, on testera le code du modele de données avec précaution
pour éviter d’oublier des attributs Doctrine, ce qui risquerait d’entrainer des
bugs.

Poly étudiant 21

https://www.doctrine-project.org/projects/doctrine-orm/en/3.2/reference/working-with-associations.html#transitive-persistence-cascade-operations
https://www.doctrine-project.org/projects/doctrine-orm/en/3.2/reference/working-with-associations.html#orphan-removal

CSC4101 2025-2026 ORM Doctrine

4 Gérer des données de tests

Examinons |'utilitaire des DataFixtures Doctrine qui permet de tester le code du
modeéle de données et de tester les fonctions de I'application sur des jeux de
données de tests.

4.1 Initialiser la base avec données de tests

Coder une classe utilitaire DataFixtures pour Doctrine
Exemple :
— Chargement dans la base de données :

private function loadProjects(ObjectManager $manager)
{
foreach ($this->getProjectsData() as [$title, $description]) {
$project = new Project();

$project->setTitle($title);
$project->setDescription($description);

$manager->persist ($project);
}
$manager->flush() ;

Listing 7 : src/DataFixtures/ProjectFixtures.php

— Définition des données dans un générateur :

private function getProjectsData()

{

// project = [title, description];

yield ['CSC4101', "Architectures et applications Web"];

yield ['CSC4102', "Introduction au Génie Logiciel Orienté Objet"];
¥

Role de yield :
$generator = $this->getProjectsData();

foreach($generator as $a) {
print_r($a);

}
Array
(
(0] => csc4101
[1] => Architectures et applications Web
)
Array
(
[0] => CsC4102
[1] => Introduction au Génie Logiciel Orienté Objet
)

L'instruction PHP yield permet de définir un tableau de n-uplets, qui seront ren-
voyés successivement en valeur de retour lors de I'appel a une méthode généra-
trice.

Poly étudiant

22

https://symfony.com/bundles/DoctrineFixturesBundle/current/index.html

CSC4101 2025-2026 ORM Doctrine

4.2 Lancer le chargement depuis la ligne de commande

A refaire a chaque recréation de la base de données dans I'environnement de développe-
ment :

$ symfony console doctrine:fixtures:load

Careful, database will be purged. Do you want to continue y/N %7y
> purging database
> loading App\DataFixtures\ProjectFixtures

Les fixtures ne servent que pour initialiser des données de test, pour un admi-
nistrateur de I'application ou un développeur.

Poly étudiant 23

CSC4101 2025-2026 ORM Doctrine

Take Away

— ORM : Entités : classes, objets -> schéma relationnel
— ORM : Chargement des objets en mémoire

— Gestion des données liées dans les associations

— Programmer les modifications synchronisées dans la BD
— Outils de génération de base de données relationnelle
— Outil de données de tests Fixtures

Poly étudiant 24

CSC4101 2025-2026 ORM Doctrine

Postface

Crédits illustrations et vidéos

— illustrations mapping Doctrine empruntées a la documentation Symfony

Poly étudiant 25

CSC4101 2025-2026 ORM Doctrine

Copyright

Ce cours est la propriété de ses auteurs et de Télécom SudParis.

Cependant, une partie des illustrations incluses est protégée par les droits de
ses auteurs, et pas nécessairement librement diffusable.

En conséquence, le contenu du présent polycopié est réservé a I'utilisation pour
la formation initiale a Télécom SudParis.

Merci de contacter les auteurs pour tout besoin de réutilisation dans un autre
contexte.

Poly étudiant 26

	 L'ORM Doctrine
	 Coder les classes
	Utiliser les classes du modèle de données
	Gérer des données de tests

