
Architecture(s) et application(s)

Web

Télécom SudParis Olivier Berger (TSP)

26/08/2025

CSC4101 - Sessions, Contrôle d’accès



CSC4101 2025-2026 CM 6

Table des matières

1 Sessions applicatives 3

2 Cookies ! 9

3 Contrôle des accès 10

4 Authentification Web 12

5 Rôles et permissions 18

6 Mise en œuvre avec Symfony 19

7 Postface 24

Poly étudiant 1



CSC4101 2025-2026 CM 6

Objectifs de cette séquence

Dans une première partie, on va étudier la façon dont les sessions permettent des inter-
actions évoluées, au-dessus des requêtes et réponses HTTP successives, afin que l’utilisa-
teur fasse l’expérience d’une réelle session applicative, et bien que le serveur HTTP soit
naturellement sans état.
Dans un deuxième temps, on va présenter le principe des mécanismes de contrôle d’ac-
cès qui seront mis en œuvre pour reconnaître les utilisateurs de l’application et leur don-
ner la permission d’utiliser ou non les fonctionnalités de celle-ci.

Poly étudiant 2



CSC4101 2025-2026 CM 6

1 Sessions applicatives

Les serveurs HTTP sont basés sur les principes d’architecture REST, donc sans
état (stateless).
Pourtant les applications Web fonctionnant sur le serveur doivent connaître et
reconnaître les utilisateurs et leurs clients HTTP pour offir une expérience utilisa-
teur satisfaisante.
Cette section présente le mécanisme des sessions qui permet aux applications
Web de palier au caractère sans état du serveur HTTP.

1.1 Session (en informatique)

— « session n. f. (télécommunications, informatique) : Période de temps continue
qui s’écoule entre la connexion et la déconnexion à un réseau ou à un système, ou
encore l’ouverture et la fermeture d’un logiciel d’application. » Source : Grand dic-
tionnaire terminologique - Office Québécois de la langue française

— « In computer science and networking in particular, a session is a time-delimited
two-way link, a practical (relatively high) layer in the TCP/IP protocol enabling in-
teractive expression and information exchange between two or more communica-
tion devices or ends […] »
Source : https://en.wikipedia.org/wiki/Session_(computer_science)

1.2 Paradoxe : applications sur protocole sans état

— L’expérience utilisateur Web suppose une instance unique d’exécution d’applica-
tion, comme dans un programme « sur le bureau »

— Faciliter la contextualisation du HATEOS :
est-ce que passer d’un état à un autre est une transition valide ?

— Pourtant, le protocole HTTP est stateless (sans état) : chaque requête recrée un
nouveau contexte d’exécution

Avec une application sur le bureau, entre deux actions de l’utilisateur, le pro-
gramme ne change pas d’état et conserve la mémoire des actions (fonction dé-
faire, etc.).

1.3 Rappel : l’application n’arrête pas de s’arrêter

À chaque requête :

1. démarrage application

2. routage vers méthode Contrôleur

(a) chargement données depuis base

(b) traitements

(c) sauvegarde en base données à persister

3. envoi Réponse

4. mort

Avec une application Web, chaque clic sur un lien (ou autres actions) réinitialise-
rait l’état de l’application à zéro ?
L’enjeu a été de résoudre cette contradiction en ne réinitialisant pas l’état de
l’application à chaque action de l’utilisateur.

Poly étudiant 3

http://m.gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=8874709
http://m.gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=8874709
https://en.wikipedia.org/wiki/Session_(computer_science)


CSC4101 2025-2026 CM 6

1.4 Application peut garder la mémoire

— Le programme Web peut stocker un état (par ex. en base de données) avant de
s’arrêter
tracer dans cet état qu’on a fini de répondre à un client donné

— Il peut le retrouver au démarrage (début de la requête suivante)
filtrer les traces précédentes pour retrouver les données du même client

Simule une session d’exécution unique comprenant une séquence d’actions du même
client
Le client doit pour cela se faire reconnaître du serveur

Besoin de fonctionnalités côté serveur : pour purger le cache de sessions pério-
diquement, gérer la sécurité …
Attention aux boutons de retour en arrière du navigateur

1.5 Exécution contextualisée pour un client

À chaque requête :

1. Identification du client (contexte de la requête)

2. démarrage application

3. routage vers méthode Contrôleur

(a) chargement (depuis base) état précédent de ce client

(b) traitements

(c) sauvegarde (en base) nouvel état

4. envoi Réponse

5. mort

Rendre cela efficace !

1.6 Comment identifier le client HTTP

— Argument d’invocation dans URL : môche, car URL pas uniformes pour tous
— En-tête particulier de la requête ?
— OUI : Cookie

— …
Respecter l’interopérabilité : standardisé par RFC 6265

Poly étudiant 4

https://datatracker.ietf.org/doc/html/rfc6265


CSC4101 2025-2026 CM 6

1.7 Session de navigation typique

1.8 Cookies

Analogie avec badge d’accès dans le monde réel
— Juste un « jeton » unique qui identifie un client HTTP
— Sur un certain périmètre (serveur, chemin d’URL, application, …)
— Format choisi par le serveur
— Taille limitée :
— peut contenir des données de l’application
— pas un état de l’application complet

— Données en clair dans le stockage de cookies du navigateur
— Durée de vie potentiellement grande

Attention aux problématiques de sécurité : pas de mot de passe dans un Cookie,
par exemple.
Les cookies sont consultables par un attaquant ayant accès aux données sto-
ckées dans les données d’un profil du navigateur.

1.9 Identification du client par cookie

Identifiant fourni systématiquement au serveur, chaque fois que le même client
HTTP se connecte
Attention, pas nécessairement le même utilisateur final : plusieurs navigateurs
ouverts en même temps sur le même site (sur plusieurs machines, ou avec plu-
sieurs profils différents) => plusieurs cookies.
Est-ce suffisant pour déterminer tout le contexte d’exécution de l’application ?

Poly étudiant 5



CSC4101 2025-2026 CM 6

Figure 1 – Multiples clients et pages

1.10 Reconnaître le client HTTP

— Données du cookie stockées sur client, envoyées avec la requête au serveur (en-
têtes)

— Serveur extrait données du cookie :
— identifiant unique
— …

— À partir de cet identifiant, le serveur peut trouver des données plus complètes sto-
ckées de son côté (base de données, stockage session, …)

1.11 Reconstituer côté serveur la continuité d’une session de navigation

À chaque nouvelle requête d’un client HTTP, la présentation du même cookie permet de
relier :
— éléments de contexte dans la requête (en-têtes HTTP, arguments chemin,…)
— mémoire de l’état précédent sauvegardé côté serveur (notamment dans la ses-
sion), à la fin de la réponse à la précédente requête HTTP du même client

La session correspond au client HTTP, qui va mémoriser le contexte d’utilisation
de ce client par l’utilisateurice.
Si une même utilisatrice utilise différents clients HTTP (par ex. un mobile d’un
côté, et un ordinateur de bureau de l’autre), il peut y avoir plusieurs sessions en
cours, avec des données pas nécessairement cohérentes dans chacune de ces
sessions.

1.12 Stocker de session côté serveur

Stockage de session côté serveur :
— Espace de stockage central côté serveur : référence du contexte d’exécution
— Accès en continu : rapide, solide, etc.
— Accès rapide : stocké dans la mémoire du serveur
— Durée de vie et unicité des sessions au choix du serveur

Accès rapide, y compris avec serveurs redondants !
Accessible pour la plate-forme applicative :

Poly étudiant 6



CSC4101 2025-2026 CM 6

Figure 2 – Stockage session côté serveur

— Données plus ou moins volumineuses
— Disponibles rapidement pour les programmes (plus que SQL vers SGBD)
— Objets du modèle de l’application stockés dans la session (pas contrainte taille),

sérialisés

La « même » page Web accédée par deux clients présentant des ID de cookies
différents, ne sera peut-être pas le même document, s’il est généré dynamique-
ment en fonction des informations présentes dans la session.
Là où le cookie est stocké côté client HTTP, la session correspondante est sto-
ckée côté serveur.
La session est potentiellement grosse, peut-être stockée en base de données,
ou dans des fichiers… Mais pas dans la même base de données que le Modèle de
l’application.
En pratique, le plus souvent, cette session est stockée sur un système de fi-
chiers ou dans une mémoire partagées (pour la gestion de cohérence si le ser-
veur d’application est dans un environnement d’exécution distribuée avec des
exécutions successives sur des serveurs différents).
La plate-forme du langage de programmation rend l’utilisation de la session très
facile pour le programmeur, en masquant la complexité sous-jacente. Cf. https:
//symfony.com/doc/current/session.html pour Symfony.

1.13 Détails cookie

— Créé lors de la première requête d’un client (n’ayant pas fourni ce cookie)
— Le serveur délivre les cookies en les intégrant dans en-têtes de réponse HTTP
— utilise l’en-tête particulier « Set-Cookie » (sur une ligne)

Set-Cookie: <nom>=<valeur>;expires=<Date>;domain=<NomDeDomaine>; path=<Path>
— Le client stocke le cookie reçu dans la réponse, pour pouvoir le renvoyer aux pro-
chaines requêtes vers ce serveur

— Exemple de réponse HTTP :
HTTP/1.1 200 OK
Server: Netscape-Entreprise/2.01
Content-Type: text/html
Content-Length: 100
Set-Cookie: clientID=6969;domain=unsite.com; path=/jeux

<HTML>...

Poly étudiant 7

https://symfony.com/doc/current/session.html
https://symfony.com/doc/current/session.html


CSC4101 2025-2026 CM 6

— Par la suite, ce cookie sera renvoyé par le client au serveur, dans chaque requête
ayant comme URL de début :
http://www.unsite.com/jeux/...

— Sauf navigation privée dans navigateurs Web

Il peut y avoir plusieurs champs « Set-Cookie » dans le message HTTP, afin de
représenter plusieurs cookies différents.

1.14 Wrap-up sessions

— Requêtes HTTP déclenchées lors demandes de transition d’un état à l’autre de
l’application

— L’exécution (PHP) résultante s’effectue sur serveur HTTP sans mémoire des inter-
actions précédentes entre client et serveur (stateless)

— L’utilisateur a une impression de continuité : une seule session d’utilisation de
l’application, où requêtes successives ont des relations de causalité

— Différentes solutions techniques, dont les cookies

Une autre solution consiste par exemple à matérialiser l’historique des dialogues
requête-réponse précédents entre le même client et le mêm serveur dans l’URL
(arguments).

Poly étudiant 8



CSC4101 2025-2026 CM 6

2 Cookies !

Pourquoi tout ce tapage sur Cookies, RGPD, vie privée, etc.
— traçage requête accès ressources (images, scripts JS, fonts, etc.)
— régies publicitaires
— profilage (pas que les cookies)

Plus de détails : « Les Cookies, qui sont-ils ? Que veulent-ils ? » (LQDN)
Mais la publicité… quels modèles économique du Web?
Aller plus loin : cf. « économie de l’attention », « capitalisme de surveillance » (Stéphane
Croizat - UTC)
Mon conseil : bloqueurs de pubs (uBlock Origin, Privacy Badger, …)

Poly étudiant 9

https://www.laquadrature.net/2021/05/28/les-cookies-qui-sont-ils-que-veulent-ils/
https://librecours.net/modules/enjeux/capitalisme-surveillance/solslide/
https://ublockorigin.com/
https://privacybadger.org/


CSC4101 2025-2026 CM 6

3 Contrôle des accès

Cette section présente le principe des mécanismes de contrôle d’accès qui seront
mis en œuvre pour reconnaître les utilisateurs de l’application et leur donner la
permission d’utiliser ou non les fonctionnalités de celle-ci.

3.1 Protéger les données / fonctions

— Confidentialité : application accessible sur Internet, même si processus / données
privés

— Privilèges : qui fait quoi
— Spécifications fonctionnelles (profils utilisateurs)
— Contrôle par l’application (HATEOS)

— Contrôle d’accès : reconnaître les utilisateurs, et mettre en place les restrictions
(sans nuire à l’utilisabilité, mobilité, etc.)

Autres aspects sécurité vus dans une séance ultérieure

3.2 Contrôle des accès

— Protéger l’accès aux fonctionnalités de l’application
— Qui est autorisé à faire quoi

Dans un monde ouvert (Internet, Web, standards)

Dans la vie d’une entreprise, on peut déployer des applications sans nécessaire-
ment les déployer sur le Web, sur Internet, donc ouvertes à tous les vents…
Mais on rend alors l’accès délicat : intranet/extranet, nécessité d’un VPN, com-
patibilité avec terminaux mobiles, utilisateurs nomades, etc.
Déployer sur le Web garde des avantages.

3.2.1 Sécurité par obscurcissement?

— Ne pas protéger spécifiquement,
— et ne pas documenter / expliquer / rendre visible ?

Ce n’est pas parce que le code de l’application est caché sur le serveur que les méchants
ne trouveront pas des failles !
#Fail

Il faut partir d’un principe de mise en place de contrôles effectifs, d’autant plus
si le code source de certains éléments de l’application est facilement récupérable
(HTML, JS).
Attention aussi à protéger l’accès aux « couches basses » : middleware, base de
données, code source, fichiers de configuration.
Le Cloud n’aide pas, de ce point de vue (repositories de code publics, stockage
Cloud non-protégé).

3.2.2 Contrôle effectif

— Au niveau de la configuration du serveur (ne pas permettre aux clients de découvrir
les failles en regardant le source)

— Dans les fonctionnalités du logiciel : configuration dans le code du projet Sym-
fony (module « firewall »)

— Mesures complémentaires (audit, etc.)

Poly étudiant 10



CSC4101 2025-2026 CM 6

C’est donc le travail du programmeur de vérifier, à chaque étape, notamment du
routage des requêtes, que le client est bien autorisé à accéder aux fonctionnali-
tés de l’application, qu’il ait suivi un lien proposé par l’application, ou qu’il ait fait
une tentative malveillante.

3.3 Modèle contrôle des accès

Identification l’utilisateur fournit à un service un moyen de le reconnaître : identité

Authentification le service vérifie cette identité

Autorisation le service donne à l’utilisateur certaines permissions

Les trois éléments ci-dessus sont fondamentaux et se retrouvent dans de nom-
breux contextes, pas uniquement pour les applications déployées sur le Web.

3.4 Dans protocole HTTP

— Identification / authentification de « bas niveau » dans le protocole HTTP (cf. RFC2617
RFC 7617 : The ’Basic’ HTTP Authentication Scheme)

— Rappel : HTTP est sans état
— Le client HTTP doit se réauthentifier à chaque requête

— Permet de transporter l’authentification dans les en-têtes
— Alternative : authentification applicative + session applicative

Le protocole HTTP supporte certaines fonctionnalités relatives à l’authentifica-
tion, mais que l’ergonomie des navigateurs rend assez difficile à utiliser en pra-
tique. Par exemple, absence de fonction permettant de se déconnecter, nécessi-
tant de quitter le navigateur.
C’est pourquoi on en vient aujourd’hui à l’utilisation de l’authentification applica-
tive dans la très grande majorité des applications Web.

Poly étudiant 11

https://tools.ietf.org/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc7617


CSC4101 2025-2026 CM 6

4 Authentification Web

Cette section présente un mécanisme d’authentification de base, l’authentifica-
tion applicative, via un formulaire dédié construit par l’application, dans une de
ses pages Web.

4.1 Mécanismes

— Authentification HTTP
— Authentification « Basic »
— autres

— Authentification applicative

4.2 Basic Auth

Figure 3 – Source : Why I’m Using HTTP Basic Auth in 2022 par Joel Dare

Inconvénient : pas de logout

4.3 Authentification applicative

4.3.1 Gestion de l’identification et de l’authentification par l’application

— L’authentification est une des fonctionnalités de l’application, via la session
— Formulaire d’authentification
— Login
— Mot-de-passe

— « base de données » de comptes

C’est un module particulièrement sensible : ne pas improviser son développe-
ment.
Atention aux contraintes juridiques en plus de techniques.

Poly étudiant 12

https://joeldare.com/why-im-using-http-basic-auth-in-2022.html


CSC4101 2025-2026 CM 6

4.3.2 Formulaire d’authentification

— Formulaire « standard »
— Champs :
— Login ou email
— Mot-de-passe (saisie cachée)

— Requête POST
— Initialise / Récupère session applicative contenant identification ou directement les
autorisations

Le formulaire est assez standard, mais recèle, en pratique des champs cachés
que l’utilisateur ne voit pas.

4.3.3 Vérification de l’authentification

— Comparer avec profil d’utilisateur connu (en base de données)
— Générer une session pour reconnaître l’utilisateur par la suite
— Attention : attaques « force brute »
— Invalider un compte/profil, ou faire une gestion de surcharge qui désactive les
tentatives (throttling, blacklist réseau, etc.)

Pour contrer les attaques par force brute, différentes stratégies sont possibles,
qu’on ne détaille pas plus dans ce cours.
On va voir un peu plus loin l’utilisation d’un mécanismes de ce type, les CAPT-
CHA.

4.3.4 Dans Symfony

— Composant Security
— Flexible : gestion souple et extensible de l’authentification
— Gère par exemple les utilisateurs dans la base de données via classe User + Doc-
trine

— Assistants générateurs de code pour les dialogues

4.3.5 Procédures?

— Gestion des mots-de-passe (qualité aléa, longueur, stockage approprié, etc.)
— Récupération de compte si oubli mot-de-passe
— Canal sécurisé ou envoi jeton de réinitialisation sur email (implique gestion emails)

— Confirmations d’authentification pour sections critiques de l’application
— Garder des traces (audit, obligations légales)
— Conformité RGPD (données personnelles dans les profils)

Complexe, donc tentative de déléguer à un tiers… mais ce tiers est-il fiable ?
Augmentation des risques pour les utilisateurs.
Si on est piraté, seuls nos clients sont victimes. Mais est-ce que ça vaut le coup
pour les pirates ?
Il vaut peut-être mieux qu’ils essayent de pirater FaceBook, et ce jour-là gare à
nous (tous) qui avons intégré une authentification via FaceBook…?

4.4 Se protéger

En tant qu’hébergeur d’une application Web
— HTTPS everywhere
— Cookie dans en-têtes, chiffrés => identifiant de session secret

— Déjouer les attaques par force brute

Poly étudiant 13



CSC4101 2025-2026 CM 6

4.4.1 Captcha

Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
Vérifier qu’un humain est aux commandes

Figure 4 – Exemple reCAPTCHA

— Pas infaillible
— Problèmes accessibilité

4.4.2 « Merdification » du Web

Combien de fois par jour voyez-vous ça ?

Figure 5 – Exemple Captcha « transparent » pour les humains

Ce genre de dialogues apparaît même dans des applis mobiles Android (le bon
coin, par ex.) !
Le terme « merdification » vient de l’anglais « enshittification »
inventé par Cory Doctorow (cf https://next.ink/brief_article/
l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/)

4.4.3 Se protéger du scraping des bots des IA

Les bots des opérateurs d’IA génératives moissonnent (scraping) violemment, et les sites
s’écroulent

Captation sauvage de la connaissance qui pénalise en particulier le monde du
« libre » / bénévole
Aucun respect pour le fichier robots.txt (https://robots-txt.com/)

Poly étudiant 14

https://next.ink/brief_article/l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/
https://next.ink/brief_article/l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/
https://robots-txt.com/


CSC4101 2025-2026 CM 6

Figure 6 – statistiques bande-passante ReadTheDocs

4.4.4 Protection

— Même style que pour attaques DDoS avant IA
— Pièges à bots : proof of work (Anubis)
— Pas évident (et pas gratuit)

Protection efficace, mais risque monopôle, et surveillance à grande échelle !
Généralisation tracking des utilisateurs légitimes ?
Impact environnemental !!!

Tout comme pour les CDN (Content Delivery Network) ces Captcha sont opé-
rés par des tiers, et peuvent donc leur servir à tracer les utilisateurs des appli-
cations, ce qui est potentiellement problématique à l’ère post-Snowden, et au
regard du RGPD.

4.4.5 Travail dissimulé pour l’IA

En passant :

Poly étudiant 15

https://anubis.techaro.lol/


CSC4101 2025-2026 CM 6

— Travail gratuit dissimulé (petites mains du clic des IA)
— Entraîner des systèmes d’armes autonomes ?

In terms of cost, we estimate that – during over 13 years of its deployment –
819 million hours of human time has been spent on reCAPTCHA, which corres-
ponds to at least $6.1 billion USD in wages.

Traffic resulting from reCAPTCHA consumed 134 Petabytes of bandwidth, which
translates into about 7.5 million kWhs of energy, corresponding to 7.5 million
pounds of CO2.

In addition, Google has potentially profited $888 billion USD from cookies and
$8.75-32.3 billion USD per each sale of their total labeled data set.

Source : Dazed & Confused : A Large-Scale Real-World User Study of reCAPTCHAv2 An-
drew Searles, Renascence Tarafder Prapty, Gene Tsudik

De plus, pour l’exemple de l’illustration « CAPTCHA et digital labor », les Capt-
cha de ce type peuvent permettre à leurs opérateurs (ici Google) d’entrainer des
mécanismes d’IA grâce au travail « bénévole » (contraint) des utilisateurs qui es-
sayent de résoudre le puzzle… en espérant que ça ne serve pas in-fine à des ap-
plications militaires, par exemple (véhicules ou systèmes d’armes autonomes) !
Pour une ressource récente sur le sujet, voir CAPTCHA : les machines « prouvent
» plus rapidement qu’elles sont des humains (NextImpact août 2023)

4.4.6 Authentification à double facteur

2FA (Two factor authentication)
— + robuste :

1. élémént connu

2. élément possédé

— Exemples :
— carte bancaire (possession) + code PIN (connu)

Poly étudiant 16

https://www.lemonde.fr/idees/article/2019/01/09/les-petites-mains-de-l-intelligence-artificielle_5406520_3232.html
https://arxiv.org/abs/2311.10911
https://www.nextinpact.com/article/72264/captcha-machines-prouvent-plus-rapidement-quelles-sont-humains
https://www.nextinpact.com/article/72264/captcha-machines-prouvent-plus-rapidement-quelles-sont-humains


CSC4101 2025-2026 CM 6

— login + mdp (connu) + SMS reçu (possession mobile)
— login + mdp (connu) + badge de sécurité générant un code unique (possession)
— login + mdp (connu) + code TOTP récupéré dans appli sur ordiphone

Authentification plus forte.
Attention : certains mécanismes s’avèrent moins fiable que prévu (SMS)
Attention aux exigences de sécurité réglementaires.

Poly étudiant 17



CSC4101 2025-2026 CM 6

5 Rôles et permissions

Cette section présente le principal modèle de définition de permissions utilisé
pour le contrôle d’accès, à base de rôles.

5.1 Role-Based Access Control (RBAC)

Contrôle d’accès à base de rôles
— Utilisateur
— Rôle
— Permissions

Figure 7 – Exemple d’affectation de rôles

Au-lieu d’attribuer des permissions à un utilisateur, on les attribue à un rôle,
qu’on délègue à un utilisateur : les permission sont gérées en fonction de la
structure de l’organisation, indépendamment des embauches, départs ou chan-
gement de responsabilité des individus.
Ce modèle n’est pas spécifique aux applications Web, mais est présent dans de
nombreux contextes applicatifs ou système.

5.2 Permissions

— Modèle applicatif de permissions
— Vérifier les permissions à chaque traitement de requête
— Routage
— Dans les traitements fonctionnels

Module « Firewall » de Symfony

5.3 Réponses Web

— Code 200 + Page mentionnant problème de permissions
— Code 403 (et peut-être un message dans la page) ?

Idéalement, les applications doivent renvoyer un code de statut 403, en cas
d’interdiction d’accès, mais certains programmeurs oublient cela, et renvoient
un message dans une page « classique » chargée en réponse 200 « OK »…

Poly étudiant 18



CSC4101 2025-2026 CM 6

6 Mise en œuvre avec Symfony

Cette section présente la façon dont on peut mettre en œuvre les mécanismes
d’authentification et de contrôle d’accès dans Symfony.

6.1 Flexibilité

— Symfony permet de gérer plein de modalités d’authentification
— Choix : s’appuyer sur la base de données, et des contrôleurs d’authentification gé-
nérés par les assistants

Symfony peut s’adapter à de nombreux contextes de déploiement, et permet
de s’interfacer avec différentes sources pour la gestion de l’identification et l’au-
thentification des utilisateurs.
On fait le choix de présenter ici le système le plus classique qui pourra être uti-
lisé pour le projet, qui s’appuie sur la base de données.

6.2 Gestion des utilisateurs avec Doctrine

— Classe User du Modèle (et mapping Doctrine en base)
— Définition de règles dans le firewall Symfony
— Rôles
— Ajouter des formulaires (+ templates) :
— Login + password
— Logout
— (Inscription, rappel du mot-de-passe, …)

On utilise les assistants générateurs de code pour mettre en place une classe
utilisateur et un contrôleur et ses formulaires nécessaire à l’authentification.

6.3 Classe User

symfony console make:user

namespace App\Entity;

use App\Repository\UserRepository;
use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;
use Symfony\Component\Security\Core\User\UserInterface;

#[ORM\Entity(repositoryClass: UserRepository::class)]
class User implements UserInterface, PasswordAuthenticatedUserInterface
{

// ...

#[ORM\Column(length: 180, unique: true)]
private ?string $email = null;

(appelée Member dans le projet)

6.4 Hiérarchie de rôles

— Arbitraire, selon les besoins de l’application
— Exemple :

Poly étudiant 19



CSC4101 2025-2026 CM 6

1. ROLE_SUPER_ADMIN

2. ROLE_ADMIN

3. ROLE_CLIENT

4. ROLE_USER

# security.yml

role_hierarchy:
ROLE_CLIENT: ROLE_USER
ROLE_ADMIN: ROLE_USER
ROLE_SUPER_ADMIN: [ROLE_USER, ROLE_ADMIN]

6.5 Firewall

Contrôle l’accès aux URLs en fonction des rôles :

# app/config/security.yml
security:

# ...

firewalls:
# ...
default:

# ...

access_control:
# require ROLE_ADMIN for /admin*
- { path: ^/admin, roles: ROLE_ADMIN }

Cette première façon de contrôler les accès, au niveau du « firewall » applicatif,
agit très en amont.
Il s’agit de bloquer les requêtes par rapport à des motifs de chemins des routes,
définis globalement, via des fichiers de configuration : peu de souplesse pour
des cas particuliers.
Expressions rationnelles : "^/admin" signifie tout chemin de route qui commence
par /admin.
D’autres possibilités existent (programmées).

6.6 Utilisation dans les contrôleurs

— Contrôle d’accès sur les routes :

#[Route('/comment/{postId}/new', name: 'comment_new', methods: ['GET', 'POST'])]
#[IsGranted('IS_AUTHENTICATED_FULLY')]
function addComment(Post $post): Response {

//...

IS_AUTHENTICATED_FULLY : un utilisateur qui vient vraiment de se reconnecter
— Contrôle d’autorisation dans le code des méthodes :

public function adminDashboard(): Response {
$this->denyAccessUnlessGranted('ROLE_ADMIN', null, 'Access denied!');

« Entrée interdite, à moins que… »

Poly étudiant 20



CSC4101 2025-2026 CM 6

Ces façons de faire sont plus fines, et permettent un filtrage :
— au cas par cas, route par route
— ou encore plus fine dans une algorithme, en fonction d’éléments de
contexte très spécifiques

On voit ici des exemples de critères comme :
is_granted('IS_AUTHENTICATED_FULLY') qui correspond à tout utilisateur au-
thentifié (quelque soit son rôle), ou denyAccessUnlessGranted('ROLE_ADMIN'... qui
vérifie bien qu’un utilisateur dispose d’un rôle précis.

6.7 Profil de l’utilisateur

— Accès aux propriétés de l’utilisateur :

$this->getUser()

// ...

$email = $this->getUser()->getEmail();
$post->setAuthorEmail($email);

6.8 Personnalisation apparence

Gabarits Twig

{% if is_granted('ROLE_ADMIN') %}
<a href="...">Delete</a>

{% endif %}

Une fois que le filtrage des accès possibles est bien en place, et vérifié active-
ment dans le code, comme exposé ci-avant, on peut finir le travail en spéciali-
sant l’affichage dans les pages.
Ici, on supprime par exemple les liens pointant vers des routes qui ne seraient
pas accessibles à un utilisateur qui ne disposerait pas du rôle adéquat.

6.9 Gestion fine

— Dans code d’une méthode de contrôleur :

$this->denyAccessUnlessGranted('ROLE_ADMIN', null, 'Access denied!');

— équivalent à :

if (! $this->get('security.authorization_checker')->isGranted('ROLE_ADMIN')) {
throw $this->createAccessDeniedException('Access denied!');

}

Déclenche une exception :
— erreur 403
— ou redirection vers login

On voit ici appraître un schéma de programmation classique consistant en fait
à déclencher la levée d’une exception qui correspond à une permission man-
quante.
Le comportement de l’application Web dépend alors d’un choix de configuration
du comportement face à une telle exception : levée d’une erreur simple (403),
ou bien redirection vers une page demandant l’authentification. La deuxième so-
lution est mise en oeuvre par défaut dans Symfony.

Poly étudiant 21



CSC4101 2025-2026 CM 6

6.9.1 Exceptions et codes retour

try {
// faire quelque chose qui appelle : throw

} catch (Exception $e) {
echo 'Exception reçue : ', $e->getMessage(), "\n";

}

Permet d’intercepter de façon standard les exceptions :
— AccessDeniedException (403)
— NotFoundHttpException (404)

La syntaxe des exceptions en PHP est assez similaire à cette de Java déjà suppo-
sée connue.

Poly étudiant 22



CSC4101 2025-2026 CM 6

Take away

— Sessions
— Cookies
— Session Symfony

— Contrôle d’accès
— Principes
— Identification
— Authentification
— Autorisations

— Rôles (RBAC)
— Contrôle dans Symfony

Poly étudiant 23



CSC4101 2025-2026 CM 6

7 Postface

7.1 Crédits illustrations et vidéos

— Illustration copie écran Basic Auth HTTP via Joel Dare
— Illustration session navigation typique via MDN : https://developer.mozilla.org/

en-US/docs/Web/HTTP/Guides/Cookies
— https://knowyourmeme.com/memes/darth-vaders-i-find-your-lack-of-faith-disturbing
— 3 spidermen : fabriquée avec « Spider Man Triple Meme Generator » d’imgflip - voir
aussi https://knowyourmeme.com/memes/spider-man-pointing-at-spider-man

— Illustration «Statistiques bande-passante ReadTheDocs » : https://about.readthedocs.
com/blog/2024/07/ai-crawlers-abuse/

Poly étudiant 24

https://joeldare.com/why-im-using-http-basic-auth-in-2022.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Cookies
https://knowyourmeme.com/memes/darth-vaders-i-find-your-lack-of-faith-disturbing
https://knowyourmeme.com/memes/spider-man-pointing-at-spider-man
https://about.readthedocs.com/blog/2024/07/ai-crawlers-abuse/
https://about.readthedocs.com/blog/2024/07/ai-crawlers-abuse/


CSC4101 2025-2026 CM 6

Copyright

Ce cours est la propriété de ses auteurs et de Télécom SudParis.
Cependant, une partie des illustrations incluses est protégée par les droits de
ses auteurs, et pas nécessairement librement diffusable.
En conséquence, le contenu du présent polycopié est réservé à l’utilisation pour
la formation initiale à Télécom SudParis.
Merci de contacter les auteurs pour tout besoin de réutilisation dans un autre
contexte.

Poly étudiant 25


	 Sessions applicatives
	Cookies !
	 Contrôle des accès
	 Authentification Web
	 Rôles et permissions
	 Mise en œuvre avec Symfony
	Postface

