Architecture(s) et application(s)
Web

TELECOM
SudParis

mHET

W2 IP PARIS

Télécom SudParis Olivier Berger (TSP)

26/08/2025

CSC4101 - Sessions, Controle d’acces

CSC4101 2025-2026 CM 6

Table des matieres

1 Sessions applicatives 3
2 Cookies! 9
3 Controle des acces 10
4 Authentification Web 12
5 Roles et permissions 18
6 Mise en ccuvre avec Symfony 19
7 Postface 24

Poly étudiant 1

CSC4101 2025-2026 CM 6

Objectifs de cette séquence

Dans une premiere partie, on va étudier la fagon dont les sessions permettent des inter-
actions évoluées, au-dessus des requétes et réponses HTTP successives, afin que l'utilisa-
teur fasse I'expérience d’une réelle session applicative, et bien que le serveur HTTP soit
naturellement sans état.

Dans un deuxiéme temps, on va présenter le principe des mécanismes de contréle d’ac-
cés qui seront mis en ceuvre pour reconnaitre les utilisateurs de I'application et leur don-
ner la permission d’utiliser ou non les fonctionnalités de celle-ci.

Poly étudiant 2

CSC4101 2025-2026 CM 6

1 Sessions applicatives

Les serveurs HTTP sont basés sur les principes d’architecture REST, donc sans
état (stateless).

Pourtant les applications Web fonctionnant sur le serveur doivent connaitre et
reconnaitre les utilisateurs et leurs clients HTTP pour offir une expérience utilisa-
teur satisfaisante.

Cette section présente le mécanisme des sessions qui permet aux applications
Web de palier au caractere sans état du serveur HTTP.

1.1 Session (en informatique)

— « session n. f. (télécommunications, informatique) : Période de temps continue
qui s’écoule entre la connexion et la déconnexion a un réseau ou a un systéme, ou
encore l'ouverture et la fermeture d’un logiciel d’application. » Source : Grand dic-
tionnaire terminologique - Office Québécois de la langue francaise

— « In computer science and networking in particular, a session is a time-delimited
two-way link, a practical (relatively high) layer in the TCP/IP protocol enabling in-
teractive expression and information exchange between two or more communica-
tion devices or ends [...] »

Source : https://en.wikipedia.org/wiki/Session_(computer_science)

1.2 Paradoxe : applications sur protocole sans état

— L'expérience utilisateur Web suppose une instance unique d’exécution d’applica-
tion, comme dans un programme « sur le bureau »

— Faciliter la contextualisation du HATEOS :
est-ce gue passer d’un état a un autre est une transition valide ?

— Pourtant, le protocole HTTP est stateless (sans état) : chaque requéte recrée un
nouveau contexte d’exécution

Avec une application sur le bureau, entre deux actions de l'utilisateur, le pro-
gramme ne change pas d’état et conserve la mémoire des actions (fonction dé-
faire, etc.).

1.3 Rappel : I'application n’arréte pas de s’arréter

A chaque requéte :
1. démarrage application
2. routage vers méthode Contréleur
(@) chargement données depuis base
(b) traitements
(c) sauvegarde en base données a persister
3. envoi Réponse
4. mort
Avec une application Web, chaque clic sur un lien (ou autres actions) réinitialise-
rait I’état de l'application a zéro?

L'enjeu a été de résoudre cette contradiction en ne réinitialisant pas |'état de
I’'application a chaque action de I'utilisateur.

Poly étudiant 3

http://m.gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=8874709
http://m.gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=8874709
https://en.wikipedia.org/wiki/Session_(computer_science)

CSC4101 2025-2026 CM 6

1.4 Application peut garder la mémoire

— Le programme Web peut stocker un état (par ex. en base de données) avant de
s’arréter
tracer dans cet état qu’on a fini de répondre a un client donné
— Il peut le retrouver au démarrage (début de la requéte suivante)
filtrer les traces précédentes pour retrouver les données du méme client
Simule une session d’exécution unique comprenant une séquence d’actions du méme
client
Le client doit pour cela se faire reconnaitre du serveur

Besoin de fonctionnalités coté serveur : pour purger le cache de sessions pério-
diguement, gérer la sécurité ...
Attention aux boutons de retour en arriére du navigateur

1.5 Exécution contextualisée pour un client

A chaque requéte :
1. Identification du client (contexte de la requéte)
2. démarrage application
3. routage vers méthode Contréleur
(a) chargement (depuis base) état précédent de ce client
(b) traitements
(c) sauvegarde (en base) nouvel état
4. envoi Réponse
5. mort
Rendre cela efficace!

1.6 Comment identifier le client HTTP

— Argument d‘invocation dans URL : méche, car URL pas uniformes pour tous
— En-téte particulier de la requéte?
— OUI : Cookie

Respecter I'interopérabilité : standardisé par RFC 6265

Poly étudiant 4

https://datatracker.ietf.org/doc/html/rfc6265

CSC4101 2025-2026 CM 6

1.7 Session de navigation typique

~ e

~ |

Browser Server

Send sign-in request to server

Y

Send session ID cookie back to browser \'.‘_,;,

A

Request new page along with session 1D cookie 29

A A

Response: depends on session validity

F. 3

1.8 Cookies

Analogie avec badge d’accés dans le monde réel
— Juste un « jeton » unique qui identifie un client HTTP
— Sur un certain périmétre (serveur, chemin d’URL, application, ...)
— Format choisi par le serveur
— Taille limitée :
— peut contenir des données de |'application
— pas un état de I'application complet
— Données en clair dans le stockage de cookies du navigateur
— Durée de vie potentiellement grande

Attention aux problématiques de sécurité : pas de mot de passe dans un Cookie,
par exemple.

Les cookies sont consultables par un attaquant ayant accés aux données sto-
ckées dans les données d’un profil du navigateur.

1.9 Identification du client par cookie

Identifiant fourni systématiquement au serveur, chaque fois que le méme client
HTTP se connecte

Attention, pas nécessairement le méme utilisateur final : plusieurs navigateurs
ouverts en méme temps sur le méme site (sur plusieurs machines, ou avec plu-
sieurs profils différents) => plusieurs cookies.

Est-ce suffisant pour déterminer tout le contexte d’exécution de I'application ?

Poly étudiant 5

CSC4101 2025-2026 CM 6

s ™
—-
Page web
% RS
. Page web
client 2
o
———
I
| Page web
p

client 3 Serveur Web

Figure 1 - Multiples clients et pages

1.10 Reconnaitre le client HTTP

— Données du cookie stockées sur client, envoyées avec la requéte au serveur (en-
tétes)

— Serveur extrait données du cookie :
— identifiant unique

— A partir de cet identifiant, le serveur peut trouver des données plus complétes sto-
ckées de son coté (base de données, stockage session, ...)

1.11 Reconstituer coté serveur la continuité d’une session de nc

A chaque nouvelle requéte d’un client HTTP, la présentation du méme cookie permet de
relier :
— éléments de contexte dans la requéte (en-tétes HTTP, arguments chemin,...)
— mémoire de I'état précédent sauvegardé coté serveur (notamment dans la ses-
sion), a la fin de la réponse a la précédente requéte HTTP du méme client

La session correspond au client HTTP, qui va mémoriser le contexte d’utilisation
de ce client par l'utilisateurice.

Si une méme utilisatrice utilise différents clients HTTP (par ex. un mobile d'un
coté, et un ordinateur de bureau de l'autre), il peut y avoir plusieurs sessions en
cours, avec des données pas nécessairement cohérentes dans chacune de ces
sessions.

1.12 Stocker de session coté serveur

Stockage de session cOté serveur :
— Espace de stockage central coté serveur : référence du contexte d’exécution
— Accés en continu : rapide, solide, etc.
— Acces rapide : stocké dans la mémoire du serveur
— Durée de vie et unicité des sessions au choix du serveur
Acces rapide, y compris avec serveurs redondants!
Accessible pour la plate-forme applicative :

Poly étudiant 6

CSC4101 2025-2026 CM 6

) g
D1 .
_] NS
- . ‘_———__-—-_ -
cientl i“—ﬂi:‘_—“_"h
Q‘il Page web 1" - 1o 1 @
% - —"

F‘age web - - -

y
__—’ .“P --

Page web L BD / stockage

client 2 _

vy

client 3 Serveur Web

Figure 2 — Stockage session coté serveur

— Données plus ou moins volumineuses

— Disponibles rapidement pour les programmes (plus que SQL vers SGBD)

— Objets du modéle de I'application stockés dans la session (pas contrainte taille),

sérialisés

La « méme » page Web accédée par deux clients présentant des ID de cookies
différents, ne sera peut-étre pas le méme document, s’il est généré dynamique-
ment en fonction des informations présentes dans la session.
La ou le cookie est stocké coté client HTTP, la session correspondante est sto-
ckée coté serveur.
La session est potentiellement grosse, peut-étre stockée en base de données,
ou dans des fichiers... Mais pas dans la méme base de données que le Modéele de
I'application.
En pratique, le plus souvent, cette session est stockée sur un systeme de fi-
chiers ou dans une mémoire partagées (pour la gestion de cohérence si le ser-
veur d’application est dans un environnement d’exécution distribuée avec des
exécutions successives sur des serveurs différents).
La plate-forme du langage de programmation rend l'utilisation de la session trés
facile pour le programmeur, en masquant la complexité sous-jacente. Cf. https:
//symfony.com/doc/current/session.html pour Symfony.

1.13 Deétails cookie

— Créé lors de la premiére requéte d’un client (n’ayant pas fourni ce cookie)
— Le serveur délivre les cookies en les intégrant dans en-tétes de réponse HTTP
— utilise I'en-téte particulier « Set-Cookie » (sur une ligne)
Set-Cookie: <nom>=<valeur>;expires=<Date>;domain=<NomDeDomaine>; path=<Path>
— Le client stocke le cookie recu dans la réponse, pour pouvoir le renvoyer aux pro-
chaines requétes vers ce serveur
— Exemple de réponse HTTP :
HTTP/1.1 200 OK
Server: Netscape-Entreprise/2.01
Content-Type: text/html
Content-Length: 100
Set-Cookie: clientID=6969;domain=unsite.com; path=/jeux

<HTML>...

Poly étudiant 7

https://symfony.com/doc/current/session.html
https://symfony.com/doc/current/session.html

CSC4101 2025-2026 CM 6

— Par la suite, ce cookie sera renvoyé par le client au serveur, dans chaque requéte

ayant comme URL de début :
http://www.unsite.com/jeux/...

— Sauf navigation privée dans navigateurs Web

Il peut y avoir plusieurs champs « Set-Cookie » dans le message HTTP, afin de
représenter plusieurs cookies différents.

1.14 Wrap-up sessions

Requétes HTTP déclenchées lors demandes de transition d’un état a I'autre de
I'application

L'exécution (PHP) résultante s’effectue sur serveur HTTP sans mémoire des inter-
actions précédentes entre client et serveur (stateless)

L'utilisateur a une impression de continuité : une seule session d’utilisation de
I'application, olu requétes successives ont des relations de causalité

Différentes solutions techniques, dont les cookies

Une autre solution consiste par exemple a matérialiser I'historique des dialogues
requéte-réponse précédents entre le méme client et le mém serveur dans I'URL
(arguments).

Poly étudiant

CSC4101 2025-2026 CM 6

2 Cookies!

Pourquoi tout ce tapage sur Cookies, RGPD, vie privée, etc.
— tracage requéte accés ressources (images, scripts JS, fonts, etc.)
— régies publicitaires
— profilage (pas que les cookies)
Plus de détails : « Les Cookies, qui sont-ils ? Que veulent-ils? » (LQDN)
Mais la publicité... quels modeles économique du Web ?
Aller plus loin : cf. « économie de l'attention », « capitalisme de surveillance » (Stéphane
Croizat - UTC)
Mon conseil : bloqueurs de pubs (uBlock Origin, Privacy Badger, ...)

Poly étudiant 9

https://www.laquadrature.net/2021/05/28/les-cookies-qui-sont-ils-que-veulent-ils/
https://librecours.net/modules/enjeux/capitalisme-surveillance/solslide/
https://ublockorigin.com/
https://privacybadger.org/

CSC4101 2025-2026 CM 6

3 Controle des acces

Cette section présente le principe des mécanismes de contrdle d’accés qui seront
mis en oceuvre pour reconnaitre les utilisateurs de 'application et leur donner la
permission d’utiliser ou non les fonctionnalités de celle-ci.

3.1 Protéger les données / fonctions

— Confidentialité : application accessible sur Internet, méme si processus / données
privés

— Privileges : qui fait quoi
— Spécifications fonctionnelles (profils utilisateurs)
— Controle par I'application (HATEOS)

— Controle d’accés : reconnaitre les utilisateurs, et mettre en place les restrictions
(sans nuire a l'utilisabilité, mobilité, etc.)

Autres aspects sécurité vus dans une séance ultérieure

3.2 Controle des acces

— Protéger I'accés aux fonctionnalités de I'application
— Qui est autorisé a faire quoi
Dans un monde ouvert (Internet, Web, standards)

Dans la vie d’une entreprise, on peut déployer des applications sans nécessaire-
ment les déployer sur le Web, sur Internet, donc ouvertes a tous les vents...
Mais on rend alors l'accés délicat : intranet/extranet, nécessité d‘'un VPN, com-
patibilité avec terminaux mobiles, utilisateurs nomades, etc.

Déployer sur le Web garde des avantages.

3.2.1 Sécurité par obscurcissement?

— Ne pas protéger spécifiquement,

— et ne pas documenter / expliquer / rendre visible ?
Ce n’est pas parce que le code de I'application est caché sur le serveur que les méchants
ne trouveront pas des failles!
#Fail

Il faut partir d’un principe de mise en place de controles effectifs, d’autant plus
si le code source de certains éléments de I'application est facilement récupérable
(HTML, JS).

Attention aussi a protéger I'accés aux « couches basses » : middleware, base de
données, code source, fichiers de configuration.

Le Cloud n’aide pas, de ce point de vue (repositories de code publics, stockage
Cloud non-protégé).

3.2.2 Controle effectif

— Au niveau de la configuration du serveur (ne pas permettre aux clients de découvrir
les failles en regardant le source)

— Dans les fonctionnalités du logiciel : configuration dans le code du projet Sym-
fony (module « firewall »)

— Mesures complémentaires (audit, etc.)

Poly étudiant 10

CSC4101 2025-2026 CM 6

C’est donc le travail du programmeur de vérifier, a chaque étape, notamment du
routage des requétes, que le client est bien autorisé a accéder aux fonctionnali-
tés de I'application, qu'il ait suivi un lien proposé par I'application, ou qu'il ait fait
une tentative malveillante.

3.3 Modele controle des acces

Identification |'utilisateur fournit & un service un moyen de le reconnaitre : identité
Authentification le service vérifie cette identité
Autorisation le service donne a l'utilisateur certaines permissions

Les trois éléments ci-dessus sont fondamentaux et se retrouvent dans de nom-
breux contextes, pas uniquement pour les applications déployées sur le Web.

3.4 Dans protocole HTTP

— Identification / authentification de « bas niveau » dans le protocole HTTP (cf. REC2617

RFC 7617 : The '‘Basic’ HTTP Authentication Scheme)
— Rappel : HTTP est sans état
— Le client HTTP doit se réauthentifier a chaque requéte
— Permet de transporter 'authentification dans les en-tétes
— Alternative : authentification applicative + session applicative

Le protocole HTTP supporte certaines fonctionnalités relatives a I’'authentifica-
tion, mais que I'ergonomie des navigateurs rend assez difficile a utiliser en pra-
tigue. Par exemple, absence de fonction permettant de se déconnecter, nécessi-
tant de quitter le navigateur.

C’est pourquoi on en vient aujourd’hui a I'utilisation de |'authentification applica-
tive dans la trés grande majorité des applications Web.

Poly étudiant 11

https://tools.ietf.org/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc7617

CSC4101 2025-2026

CM 6

4 Authentification Web

Cette section présente un mécanisme d’authentification de base, I'authentifica-
tion applicative, via un formulaire dédié construit par |'application, dans une de
ses pages Web.

4.1 Meécanismes

— Authentification HTTP
— Authentification « Basic »
— autres

— Authentification applicative

4.2 Basic Auth

[JOX } @ https://localhost:8003 x + M

< C' @® localhost:8003

£
%
@

Sign in

https://localhost:8003

Username admin

Password \ I

Figure 3 - Source : Why I'm Using HTTP Basic Auth in 2022 par Joel Dare

Inconvénient : pas de logout

4.3 Authentification applicative

4.3.1 Gestion de l'identification et de I'authentification par I'application

— L’authentification est une des fonctionnalités de I'application, via la session
— Formulaire d’authentification

— Login

— Mot-de-passe
— « base de données » de comptes

C’est un module particulierement sensible : ne pas improviser son développe-
ment.
Atention aux contraintes juridiques en plus de techniques.

Poly étudiant

12

https://joeldare.com/why-im-using-http-basic-auth-in-2022.html

CSC4101 2025-2026 CM 6

4.3.2 Formulaire d’authentification

— Formulaire « standard »

— Champs :
— Login ou email
— Mot-de-passe (saisie cachée)

— Requéte POST

— Initialise / Récupere session applicative contenant identification ou directement les
autorisations

Le formulaire est assez standard, mais recéle, en pratique des champs cachés
que l'utilisateur ne voit pas.

4.3.3 Vérification de I'authentification

— Comparer avec profil d’utilisateur connu (en base de données)
— Générer une session pour reconnaitre |'utilisateur par la suite
— Attention : attaques « force brute »
— Invalider un compte/profil, ou faire une gestion de surcharge qui désactive les
tentatives (throttling, blacklist réseau, etc.)

Pour contrer les attaques par force brute, différentes stratégies sont possibles,
gu’on ne détaille pas plus dans ce cours.

On va voir un peu plus loin l'utilisation d’'un mécanismes de ce type, les CAPT-
CHA.

4.3.4 Dans Symfony

— Composant Security

— Flexible : gestion souple et extensible de |'authentification

— Geére par exemple les utilisateurs dans la base de données via classe User + Doc-
trine

— Assistants générateurs de code pour les dialogues

4.3.5 Procédures?

— Gestion des mots-de-passe (qualité aléa, longueur, stockage appropri€, etc.)
— Récupération de compte si oubli mot-de-passe
— Canal sécurisé ou envoi jeton de réinitialisation sur email (implique gestion emails)
— Confirmations d’authentification pour sections critiques de I'application
— Garder des traces (audit, obligations Iégales)
— Conformité RGPD (données personnelles dans les profils)

Complexe, donc tentative de déléguer a un tiers... mais ce tiers est-il fiable ?
Augmentation des risques pour les utilisateurs.

Si on est piraté, seuls nos clients sont victimes. Mais est-ce que ¢a vaut le coup
pour les pirates?

Il vaut peut-étre mieux qu'ils essayent de pirater FaceBook, et ce jour-la gare a
nous (tous) qui avons intégré une authentification via FaceBook...?

4.4 Se protéger

En tant qu’hébergeur d’une application Web
— HTTPS everywhere
— Cookie dans en-tétes, chiffrés => identifiant de session secret
— Déjouer les attaques par force brute

Poly étudiant 13

CSC4101 2025-2026 CM 6

4.4.1 Captcha

Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
Vérifier qu’'un humain est aux commandes

Type the two words:
' re CAPTCHA
stop spam

d books.

Figure 4 — Exemple reCAPTCHA

— Pas infaillible
— Problémes accessibilité
4.4.2 « Merdification » du Web

Combien de fois par jour voyez-vous ¢a?

Verifying you are human. This may
take a few seconds.

. - Verifying... CLOUDFLARE

Privacy - Terms

Figure 5 - Exemple Captcha « transparent » pour les humains

Ce genre de dialogues apparait méme dans des applis mobiles Android (le bon
coin, par ex.)!

Le terme « merdification » vient de I'anglais « enshittification »

inventé par Cory Doctorow (cf https://next.ink/brief_article/
l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/)

4.4.3 Se protéger du scraping des bots des IA

Les bots des opérateurs d'IA génératives moissonnent (scraping) violemment, et les sites
s’écroulent

Captation sauvage de la connaissance qui pénalise en particulier le monde du
« libre » / bénévole
Aucun respect pour le fichier robots.txt (https://robots-txt.com/)

Poly étudiant 14

https://next.ink/brief_article/l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/
https://next.ink/brief_article/l-entshittification-ou-merdification-mot-de-lannee-du-dictionnaire-macquarie/
https://robots-txt.com/

CSC4101 2025-2026 CM 6

Traffic for readthedocs.org @ Print report Download data b

@ Add filter May 1st 00:00 —> May 31st 23:59 X

Source user agent equals Mozilla/5.0 AppleWebKit/5... X

Data transfer summary

Total HTTP data transferred in requests.

All Referer Host Country Path Edge status code

® Total data transfer

73.43TB

10TB
9TB
8TB

7TB

5TB

Data transfer

4TB
37TB
27B
178

0B
May Frio3 Sun05 Tue 07 ThuO09 Sat11 Mon13 Wed15 Fri17 Sun19 Tue21 Thu23 Sat25 Mon 27 Wed 29 Fri31
Time (local)

Figure 6 - statistiques bande-passante ReadTheDocs

4.4.4 Protection

— Méme style que pour attaques DDoS avant IA

— Pieges a bots : proof of work (Anubis)

— Pas évident (et pas gratuit)
Protection efficace, mais risque monopole, et surveillance a grande échelle!
Généralisation tracking des utilisateurs légitimes ?
Impact environnemental !!!

Tout comme pour les CDN (Content Delivery Network) ces Captcha sont opé-
rés par des tiers, et peuvent donc leur servir a tracer les utilisateurs des appli-
cations, ce qui est potentiellement problématique a |'ére post-Snowden, et au
regard du RGPD.

4.4.5 Travail dissimulé pour I'IA

En passant :

Poly étudiant 15

https://anubis.techaro.lol/

CSC4101 2025-2026 CM 6

Sélectionnez toutes les images montrant
un bloc d'appartements.

VALIDER

— Travail gratuit dissimulé (petites mains du clic des IA)

— Entrainer des systémes d’armes autonomes?

In terms of cost, we estimate that — during over 13 years of its deployment -
819 million hours of human time has been spent on reCAPTCHA, which corres-
ponds to at least $6.1 billion USD in wages.

Traffic resulting from reCAPTCHA consumed 134 Petabytes of bandwidth, which
translates into about 7.5 million kWhs of energy, corresponding to 7.5 million
pounds of CO2.

In addition, Google has potentially profited $888 billion USD from cookies and
$8.75-32.3 billion USD per each sale of their total labeled data set.

Source : Dazed & Confused : A Large-Scale Real-World User Study of reCAPTCHAv2 An-
drew Searles, Renascence Tarafder Prapty, Gene Tsudik

De plus, pour I'exemple de l'illustration « CAPTCHA et digital labor », les Capt-
cha de ce type peuvent permettre a leurs opérateurs (ici Google) d’entrainer des
mécanismes d'IA grace au travail « bénévole » (contraint) des utilisateurs qui es-
sayent de résoudre le puzzle... en espérant que ¢a ne serve pas in-fine a des ap-
plications militaires, par exemple (véhicules ou systemes d’armes autonomes) !
Pour une ressource récente sur le sujet, voir CAPTCHA : les machines « prouvent
» plus rapidement qu’elles sont des humains (NextImpact aolt 2023)

4.4.6 Authentification a double facteur
2FA (Two factor authentication)
— + robuste :
1. élémént connu
2. élément possédé

— Exemples :
— carte bancaire (possession) + code PIN (connu)

Poly étudiant 16

https://www.lemonde.fr/idees/article/2019/01/09/les-petites-mains-de-l-intelligence-artificielle_5406520_3232.html
https://arxiv.org/abs/2311.10911
https://www.nextinpact.com/article/72264/captcha-machines-prouvent-plus-rapidement-quelles-sont-humains
https://www.nextinpact.com/article/72264/captcha-machines-prouvent-plus-rapidement-quelles-sont-humains

CSC4101 2025-2026 CM 6

— login + mdp (connu) + SMS recu (possession mobile)
— login + mdp (connu) + badge de sécurité générant un code unique (possession)
— login + mdp (connu) + code TOTP récupéré dans appli sur ordiphone

Authentification plus forte.
Attention : certains mécanismes s’averent moins fiable que prévu (SMS)
Attention aux exigences de sécurité réglementaires.

Poly étudiant 17

CSC4101 2025-2026 CM 6

5 Roles et permissions

Cette section présente le principal modele de définition de permissions utilisé
pour le contrble d’acces, a base de roles.

5.1 Role-Based Access Control (RBAC)

Controle d'accés a base de rbles
— Utilisateur
— Role
— Permissions

e R

' ™\
Utilisateur 1
L) (-\

Permission 1

. J

e ™~ Role 1
\ y, ()
Permission 2

Utilisateur 2

\ / e N

L J
4 A Réle 2

'd N
Utilisateur 3 \. J\

Permission 3

o J

x W,

Figure 7 - Exemple d’affectation de réles

Au-lieu d'attribuer des permissions a un utilisateur, on les attribue a un réle,
qu’on délegue a un utilisateur : les permission sont gérées en fonction de la
structure de l'organisation, indépendamment des embauches, départs ou chan-
gement de responsabilité des individus.

Ce modeéle n’est pas spécifique aux applications Web, mais est présent dans de
nombreux contextes applicatifs ou systéme.

5.2 Permissions

— Modele applicatif de permissions
— Vérifier les permissions a chaque traitement de requéte
— Routage
— Dans les traitements fonctionnels
Module « Firewall » de Symfony

5.3 Réponses Web

— Code 200 + Page mentionnant probléme de permissions
— Code 403 (et peut-étre un message dans la page) ?

Idéalement, les applications doivent renvoyer un code de statut 403, en cas
d’interdiction d’accés, mais certains programmeurs oublient cela, et renvoient
un message dans une page « classique » chargée en réponse 200 « OK »...

Poly étudiant 18

CSC4101 2025-2026 CM 6

6 Mise en ceuvre avec Symfony

Cette section présente la fagon dont on peut mettre en ceuvre les mécanismes
d’authentification et de contréle d’accés dans Symfony.

6.1 Flexibilité

— Symfony permet de gérer plein de modalités d’authentification
— Choix : s’appuyer sur la base de données, et des contr6leurs d’authentification gé-
nérés par les assistants

Symfony peut s’adapter a de nombreux contextes de déploiement, et permet
de s’interfacer avec différentes sources pour la gestion de l'identification et I'au-
thentification des utilisateurs.

On fait le choix de présenter ici le systeme le plus classique qui pourra étre uti-
lisé pour le projet, qui s'appuie sur la base de données.

6.2 Gestion des utilisateurs avec Doctrine

— Classe User du Modéle (et mapping Doctrine en base)
— Définition de regles dans le firewall Symfony
— ROles
— Ajouter des formulaires (+ templates) :
— Login + password
— Logout
— (Inscription, rappel du mot-de-passe, ...)

On utilise les assistants générateurs de code pour mettre en place une classe
utilisateur et un controleur et ses formulaires nécessaire a I'authentification.

6.3 Classe User

symfony console make:user

namespace App\Entity;

use App\Repository\UserRepository;

use Doctrine\ORM\Mapping as ORM;

use Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;
use Symfony\Component\Security\Core\User\UserInterface;

#[ORM\Entity(repositoryClass: UserRepository::class)]
class User implements UserInterface, PasswordAuthenticatedUserInterface
{

7 coo

#[ORM\Column(length: 180, unique: true)]
private ?string $email = null;

(appelée Member dans le projet)

6.4 Hiérarchie de roles

— Arbitraire, selon les besoins de I'application
— Exemple :

Poly étudiant 19

CSC4101 2025-2026 CM 6

ROLE_SUPER_ADMIN
ROLE_ADMIN
ROLE_CLIENT
ROLE_USER

PN PE

security.yml
role_hierarchy:
ROLE_CLIENT: ROLE_USER

ROLE_ADMIN: ROLE_USER
ROLE_SUPER_ADMIN: [ROLE_USER, ROLE_ADMIN]

6.5 Firewall

Controle I'acces aux URLs en fonction des roles :

app/config/security.yml
security:
...

firewalls:
(3 coo
default:
2} ooo

access_control:
require ROLE_ADMIN for /adminx
- { path: ~/admin, roles: ROLE_ADMIN }

Cette premiére facon de controbler les accés, au niveau du « firewall » applicatif,
agit trés en amont.

Il s’agit de bloquer les requétes par rapport a des motifs de chemins des routes,
définis globalement, via des fichiers de configuration : peu de souplesse pour
des cas particuliers.

Expressions rationnelles : "~/admin" signifie tout chemin de route qui commence
par /admin.

D’autres possibilités existent (programmeées).

6.6 Utilisation dans les controleurs

— Contrdle d’accés sur les routes :
#[Route('/comment/{postId}/new', name: 'comment_new', methods: ['GET', 'POST'])]
#[IsGranted('IS_AUTHENTICATED_FULLY')]
function addComment (Post $post): Response {
//...

IS_AUTHENTICATED_FULLY : un utilisateur qui vient vraiment de se reconnecter
— Controle d’autorisation dans le code des méthodes :

public function adminDashboard(): Response {
$this->denyAccessUnlessGranted ('ROLE_ADMIN', null, 'Access denied!');

« Entrée interdite, a moins que... »

Poly étudiant 20

CSC4101 2025-2026

Ces facons de faire sont plus fines, et permettent un filtrage :

— au cas par cas, route par route

— ou encore plus fine dans une algorithme, en fonction d’éléments de

contexte tres spécifiques

On voit ici des exemples de critéres comme :
is_granted (' IS_AUTHENTICATED_FULLY') qui correspond a tout utilisateur au-
thentifié (quelque soit son r6le), ou denyAccessUnlessGranted('ROLE_ADMIN' ... qui
vérifie bien qu’un utilisateur dispose d’un réle précis.

6.7 Profil de l'utilisateur

— Accés aux propriétés de I'utilisateur :
$this->getUser ()
/...

$email = $this->getUser () ->getEmail();
$post->setAuthorEmail ($email) ;

6.8 Personnalisation apparence

Gabarits Twig

{% if is_granted('ROLE_ADMIN') %}
Delete
{% endif %}

Une fois que le filtrage des accés possibles est bien en place, et vérifié active-
ment dans le code, comme exposé ci-avant, on peut finir le travail en spéciali-
sant l'affichage dans les pages.

Ici, on supprime par exemple les liens pointant vers des routes qui ne seraient
pas accessibles a un utilisateur qui ne disposerait pas du role adéquat.

6.9 Gestion fine

— Dans code d’une méthode de controleur :
$this->denyAccessUnlessGranted ('ROLE_ADMIN', null, 'Access denied!');
— équivalent a :

if (! $this->get('security.authorization_checker')->isGranted('ROLE_ADMIN')) {
throw $this->createAccessDeniedException('Access denied!');

}

Déclenche une exception :
— erreur 403
— ou redirection vers login

On voit ici appraitre un schéma de programmation classique consistant en fait

a déclencher la levée d’une exception qui correspond a une permission man-
quante.

Le comportement de I'application Web dépend alors d‘un choix de configuration
du comportement face a une telle exception : levée d’une erreur simple (403),
ou bien redirection vers une page demandant I'authentification. La deuxiéme so-
lution est mise en oeuvre par défaut dans Symfony.

Poly étudiant

CSC4101 2025-2026

CM 6

6.9.1 Exceptions et codes retour

try {
// faire quelque chose qui appelle : throw
} catch (Exception $e) {
echo 'Exception regue : ', $e->getMessage(), "\n";

}

Permet d’intercepter de facon standard les exceptions :

— AccessDeniedException (403)
— NotFoundHttpException (404)

La syntaxe des exceptions en PHP est assez similaire a cette de Java déja suppo-

sée connue.

Poly étudiant

22

CSC4101 2025-2026

CM 6

Take away

— Sessions
— Cookies
— Session Symfony
— Controle d’accés
— Principes
— Identification
— Authentification
— Autorisations
— Roles (RBAC)
— Contréle dans Symfony

Poly étudiant

23

CSC4101 2025-2026 CM 6

7 Postface

7.1 Crédits illustrations et vidéos

— Illustration copie écran Basic Auth HTTP via Joel Dare

— Illustration session navigation typique via MDN : https://developer.mozilla.org/
en-US/docs/Web/HTTP/Guides/Cookies

— https://knowyourmeme.com/memes/darth-vaders-i-find-your-lack-of-faith-disturbing

— 3 spidermen : fabriquée avec « Spider Man Triple Meme Generator » d'imgflip - voir
aussi https://knowyourmeme . com/memes/spider-man-pointing-at-spider-man

— Illustration « Statistiques bande-passante ReadTheDocs » : https://about.readthedocs.
com/blog/2024/07/ai-crawlers-abuse/

Poly étudiant 24

https://joeldare.com/why-im-using-http-basic-auth-in-2022.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Cookies
https://knowyourmeme.com/memes/darth-vaders-i-find-your-lack-of-faith-disturbing
https://knowyourmeme.com/memes/spider-man-pointing-at-spider-man
https://about.readthedocs.com/blog/2024/07/ai-crawlers-abuse/
https://about.readthedocs.com/blog/2024/07/ai-crawlers-abuse/

CSC4101 2025-2026 CM 6

Copyright

Ce cours est la propriété de ses auteurs et de Télécom SudParis.

Cependant, une partie des illustrations incluses est protégée par les droits de
ses auteurs, et pas nécessairement librement diffusable.

En conséquence, le contenu du présent polycopié est réservé a I'utilisation pour
la formation initiale a Télécom SudParis.

Merci de contacter les auteurs pour tout besoin de réutilisation dans un autre
contexte.

Poly étudiant 25

	 Sessions applicatives
	Cookies !
	 Contrôle des accès
	 Authentification Web
	 Rôles et permissions
	 Mise en œuvre avec Symfony
	Postface

