
Contrôle Final 2 - CSC3101 - 25 Mars 2025 - 1h30
Tout document écrit est autorisé. Pour répondre à une question, vous donnez le code correspondant
(évitez les répétitions). Les classes sont à placer dans le paquetage par défaut. Sauf indication contraire,
la visibilité des méthodes et attributs est celle par défaut. Il n’y a pas à écrire les directives import.

Dans cet examen, nous nous aventurons dans le monde du trading algorithmique. Le terme trad-
ing algorithmique fait référence à l’utilisation d’ordinateurs sur les marchés financiers, ces lieux où
s’échangent des actifs tels que des actions et obligations d’états. Nous commençons par modéliser les
ordres d’achat et de vente présents dans un marché puis la notion centrale de carnet d’ordres. Plus
loin, nous regarderons comment exécuter un ordre au marché.

1. Les ordres (~20 minutes, 5pt)

Un ordre contient un prix et un nombre d’actifs. Dans cet examen, le prix sera un flottant. Nous
stockons un ordre dans une instance de la classe Order. Cette classe possède deux attributs: un prix
(float price) et une quantité d’actifs (int shares). Le constructeur de cette classe reçoit deux
arguments pour initialiser chacun de ses attributs. La classe Order contient aussi les deux getters
suivantes :
- float getPrice() retourne le prix,
- int getShares() retourne la quantité d’actifs.

[Q1a] (2pt) Donnez le code de la classe Order (à savoir, ses attributs, son constructeur et ses deux
getters).

On souhaite pouvoir comparer deux ordres. Pour ce faire, la classe Order doit mettre en œuvre
l’interface Comparable<Order>.

[Q1b] (1pt) Quelle est la signature de la classe Order pour mettre en œuvre Comparable<Order> ?

L’interface Comparable<Order> définit la méthode public int compareTo(Order other). Soient
deux ordres x et y, x.compareTo(y) doit retourner 1 si le prix de x est plus grand que le prix de y.
Dans le cas inverse, l’appel retourne -1. En cas d’égalité, la méthode retourne 0.

[Q1c] (2pt) Donnez le code de la méthode compareTo(Order other).

2. Le carnet d’ordres (~30 minutes, 7pt)

Un ordre peut correspondre à un achat (“bid”, en anglais) ou à une vente (“ask”). Le carnet d’ordres
(“order book”) stocke les ordres passés par les traders sur un actif et les exécutent. Pour ce faire, il
utilise deux champs:
- descendingBids liste les ordres d’achat par ordre décroissant de leurs prix
- ascendingAsks liste les ordres de vente par ordre croissant de leurs prix

Pour rappel, le JDK fournit un support pour stocker des listes en Java. En effet, soit T une classe
quelconque, alors la classe List<T> permet de stocker une liste d’instances de T.

[Q2a] (1pt) Rappelez le lien qui existe entre les classes List et ArrayList du JDK. Donnez le code
pour créer une liste d’ordres. Comment est stockée en mémoire cette liste ?

[Q2b] (1pt) Donner le code du constructeur de la classe OrderBook. Ce constructeur prend en argument
deux listes afin d’initialiser les champs descendingBids et ascendingAsks. On suppose que ces listes
sont déjà triées.

En finance, on représente un ordre (d’achat ou de vente) par une paire (𝑃 , 𝑁), où 𝑃 est le prix et 𝑁

1



Figure 1: Illustration d’un carnet d’ordres

le nombre d’actifs. Les listes du carnet d’ordre ont donc la forme suivante:

Ordres d’achat: [(𝑃 (𝑏)
𝑖 , 𝑁 (𝑏)

𝑖 ) ∣ 0 ≤ 𝑖 < 𝑚] , 𝑃 (𝑏)
𝑖 > 𝑃 (𝑏)

𝑗 pour 𝑖 < 𝑗
Ordres de vente: [(𝑃 (𝑎)

𝑖 , 𝑁 (𝑎)
𝑖 ) ∣ 0 ≤ 𝑖 < 𝑛] , 𝑃 (𝑎)

𝑖 < 𝑃 (𝑎)
𝑗 pour 𝑖 < 𝑗

Par ailleurs, on utilise aussi les termes standards suivants: Nous faisons référence à 𝑃 (𝑏)
0 en tant que

prix acheteur (“bid price”). C’est le prix maximum qu’un acheteur est prêt à payer pour un actif. A
l’inverse, 𝑃 (𝑎)

0 est le prix minimum auquel un vendeur est prêt à céder un actif. On l’appelle le prix
vendeur (“ask price”). La valeur 𝑃 (𝑎)

0 +𝑃 (𝑏)
0

2 est appelé prix médian (“mid price”). L’écart entre le prix
acheteur et le prix vendeur (“bid-ask spread” en anglais) est défini par 𝑃 (𝑎)

0 −𝑃 (𝑏)
0 . Enfin, 𝑃 (𝑎)

𝑛−1 −𝑃 (𝑏)
𝑚−1

est la profondeur du marché.

Un carnet d’ordres est illustré dans la Figure 1. Dans cette figure, les ordres d’achat sont en bleu et
les ordres de vente en rouge. Le prix acheteur est de 4€ et le prix vendeur de 5€.

[Q2c] (1pt) Quel est le spread dans la Figure 1 ? Dans cette même figure, quelle est la profondeur du
marché ?

[Q2d] (4pt) Ajoutez les méthodes suivantes à la classe OrderBook:
- float bidPrice() retourne le prix acheteur
- float askPrice() retourne le prix vendeur
- float midPrice() retourne le prix médian
- float bidAskSpread() retourne le spread
- float marketDepth() retourne la profondeur du marché
Pour ce faire, vous pourrez utiliser la méthode get(i) de List qui retourne l’élément en position i
dans la liste. Par ailleurs, la méthode size() renvoie la taille de la liste.

3. Exécution des ordres (~20 minutes, 4pt)

Dans une activité de marché normale, le prix d’un nouvel ordre de vente est généralement supérieur
au prix acheteur (c.à.d. de la meilleure offre d’achat). Cependant, si cet ordre a un prix inférieur
ou égal au prix acheteur, nous disons que le marché se croise, à savoir que les plages de prix de
l’offre et de la demande s’intersectent. Ceci entraîne une transaction immédiate qui épuise les offres
d’achat disponibles. Le vendeur vend alors (tout ou partie) de ses actifs au prix proposé par le (ou les)
acheteurs.

2



En détail, quand un nouvel ordre de vente (𝑃 , 𝑁) arrive et que le marché se croise, deux modifications
ont lieu. D’abord, on supprime les meilleures offres d’achat du carnet d’ordres. À savoir, les offres
suivantes:

[(𝑃 (𝑏)
𝑖 , min (𝑁 (𝑏)

𝑖 , max (0, 𝑁 −
𝑖−1
∑
𝑗=0

𝑁 (𝑏)
𝑗 ))) ∣ (𝑖 ∶ 𝑃 (𝑏)

𝑖 ≥ 𝑃)]

Par exemple, les offres d’achat de la Figure 1 forme la liste suivante: [(4€, 1), (3€, 2), (2€, 2), (1€, 10)].
Si une offre de vente (2€, 4) arrive, on supprime les ordres suivants: [(4€, 1), (3€, 2), (2€, 1)]. Ainsi, la
liste est changée en: [(2€, 1), (1€, 10)].
De plus, il se peut que la vente soit incomplète, c’est à dire que tout n’a pas été vendu. Dans l’exemple
précédent, ceci se produit par exemple si l’ordre de vente est (4€, 2). Dans un tel cas, on ajoute l’ordre
de vente suivant au carnet d’ordres:

⎛⎜⎜
⎝

𝑃, max ⎛⎜⎜
⎝

0, 𝑁 − ∑
𝑖∶𝑃 (𝑏)

𝑖 ≥𝑃
𝑁 (𝑏)

𝑖
⎞⎟⎟
⎠

⎞⎟⎟
⎠

La méthode void executeSellOrder(Order sell) de la classe OrderBook permet l’exécution d’un
ordre de vente en suivant la logique ci-dessus. D’abord, elle supprime les ordres d’achat qui sont
exécutés (c’est à dire dont le nombre de shares tombe à 0). Ensuite, si la vente est incomplète, elle
ajoute un ordre de vente approprié dans le carnet d’ordres.

[Q3a] (3pt) Donnez le code de la méthode void executeSellOrder(Order sell). Pour rappel, la
méthode d’instance removeAll(c) de List permet de supprimer tous les éléments présents dans la
collection c. Il n’est pas demandé de trier la liste des ordres de vente (variable descendingAsks) si
tout n’est pas vendu.

[Q3b] (1pt) On souhaite ajouter une méthode void executeBuyOrder(Order buy) pour implémenter
un ordre d’achat. Expliquer dans les grandes lignes (sans la coder nécessairement) comment mettre
en œuvre cette méthode dans la classe OrderBook.

4. Ordres au marché (~20 minutes, 4pt)

Les ordres vus précédemment sont dit ordres limites. En effet, ils définissent des valeurs auxquelles
l’actif est acheté/vendu. Un autre type d’ordre est dit au marché. Dans ce cas là, l’ordre est exécuté
en utilisant les ordres présents dans le marché. En d’autres termes, une offre de vente au marché de
𝑁 actifs vendra les 𝑁 actifs aux meilleurs acheteurs présents sur le marché au prix que chacun d’eux
demande. La vente rapportera donc le profit suivant:

(
𝐾−1
∑
𝑖=0

𝑃 (𝑏)
𝑖 × 𝑁 (𝑏)

𝑖 ) + (𝑃 (𝑏)
𝐾 × (𝑁 −

𝐾−1
∑
𝑖=0

𝑁 (𝑏)
𝑖 ))

où 𝐾 est défini par:

𝐾 = min ({𝑘 ≥ 0 ∣ (
𝑘

∑
𝑖=0

𝑁 (𝑏)
𝑘 ) ≥ 𝑁})

Par simplicité, on considère ici que les ordres d’achat présents sur le marché permettent toujours
d’exécuter l’ordre au marché (quelque soit la valeur de 𝑁).

[Q4a] (1pt) La classe MarketOrder modélise un ordre au marché. Cette classe étend la classe Order.
Elle contient un constructeur qui prend en paramètre un nombre d’actifs. (En effet le prix étant
fonction du marché, il n’est pas défini par avance comme avec un ordre limite.) Donnez le code de la

3



classe MarketOrder. Pour ce faire vous utiliserez le mot clé super en passant une valeur abitraire de
prix (e.g., 0) au constructeur de la classe mère.

[Q4b] (3pt) Écrivez le code de la méthode float executeSellMarketOrder(MarketOrder sell)
qui permet de réaliser un ordre de vente au marché. Cette méthode utilisera la méthode
executeSellOrder(Order sell) que vous avez précédemment écrite. La valeur retournée par un
appel à executeSellMarketOrder est le profit réalisé par cette vente. Quelle est la complexité d’un
appel à executeSellMarketOrder en fonction du nombre d’offres d’achat (𝑛) disponibles sur le
marché ?

Voici un exemple d’utilisation du code écrit dans cet examen:

List<Order> bids = new ArrayList<>(
List.of(new Order(4,1), new Order(3,2), new Order(2,2), new Order(1,10)));

List<Order> asks = new ArrayList<>(
List.of(new Order(5,1), new Order(7,2), new Order(10,4)));

OrderBook ob = new OrderBook(bids, asks);
ob.executeSellOrder(new Order(3,4));
System.out.println(ob);

bids = new ArrayList<>(
List.of(new Order(4,1), new Order(3,2), new Order(2,2), new Order(1,10)));

asks = new ArrayList<>(
List.of(new Order(5,1), new Order(7,2), new Order(10,4)));

ob = new OrderBook(bids, asks);
float gain = ob.executeSellMarketOrder(new MarketOrder(6));
System.out.println(gain);
System.out.println(ob);

Si on exécute ce code, il affiche sur la console le résultat suivant:

bids=[(2.0,2), (1.0,10)]
asks=[(3.0,3), (5.0,1), (7.0,2), (10.0,4)]
15.0
bids=[(1.0,9)]
asks=[(5.0,1), (7.0,2), (10.0,4)]

4


	Contrôle Final 2 - CSC3101 - 25 Mars 2025 - 1h30
	1. Les ordres (~20 minutes, 5pt)
	2. Le carnet d’ordres (~30 minutes, 7pt)
	3. Exécution des ordres (~20 minutes, 4pt)
	4. Ordres au marché (~20 minutes, 4pt)


