
1. Addition of peripherals on the CVA6 core us-
ing HLS
Advisor: Nicolas Derumigny

Prerequisite: Linux / 16 GB RAM / 50 GB available disk drive

Summary: The CVA6 is a low-power, open source CPU written in SystemVer-
ilog. Using it in real-life requires some essential peripherals (DRAM controller,
firmware, etc) that the Core-V APU implements under a very basic form. In
the team, we have running version of this design for two FPGAs, the ZCU104
and the PYNQ-Z2. On the Core-V APU, memory and peripherals are accessed
using a central addressable AXI bus. In this project, the goal is to use the
HLS (High-level Synthesis) framework to write AXI-accessible devices using
C/C++, implement a working design integrating them as well as the corre-
sponding driver.

2. Customization of the CVA6 core
Advisor: Nicolas Derumigny

Prerequisite: Linux / 16 GB RAM / 50 GB available disk drive

Summary: The CVA6 is a low-power, open source CPU written in SystemVer-
ilog. In the team, we use it to run a small hypervisor, Fork-Nox. The goal of
this project is to identify, quantify and if possible implement microarchitectural
characteristics that would decrease the overhead of Fork-nox compared to native
execution. One lead is to study the influence of data / instruction cache sizes,
branch predictor, frequency and TLB size. Another lead is to modify the gran-
ularity of virtual-to-hypervisor interception mechanisms, which requires deeper
modification of the code base.

3. MARS Attack: Optimizing CPU to FPGA
data transfers through coalescing, compression
and data layout reordering
Advisor: Nicolas Derumigny, potentially Elizabeth Brunet

Prerequisite: Linux / 16 GB RAM / 50 GB available disk drive

Summary:: FPGAs are a class of chips that can be configured as compute
accelerators. In this setup, the goal is to deport a part of a computation named
tile on the FPGA, whose on-chip memory is limited. When memory bandwidth
becomes the issue, using efficiently the limited memory interfaces is crucial. We
have developed an optimization framework relying on compression, packing and
data layout modification through an analysis called MARS to minimize latency,
i.e. reduce the communication time between the host and the FPGA. In this
context, you will either:

• leverage MARS to accelerate new benchmarks from the Polybench/C suite,
by manipulating abstract program representations and transformations to

1



generate new modules.
• integrate existing MARS transfers modules to an end-to-end accelerator

for benchmarks extracted from the Polybench/C benchmarking suite.

2


	1. Addition of peripherals on the CVA6 core using HLS
	2. Customization of the CVA6 core
	3. MARS Attack: Optimizing CPU to FPGA data transfers through coalescing, compression and data layout reordering

