Research project

POWERFUL SERVERLESS: Power
Measurement of Serverless Functions

Mathieu Bacou; SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

mathieu.bacou@etelecom-sudparis.eu
Romain Rouvoy; Univ. Lille, CRIStAL, UMR CNRS 9189, Inria, France
romain.rouvoy@univ-1lille.fr

Keywords: power usage, Serverless, Function-as-a-Service, measurements, systems, cloud

1 Context

Cloud, i.e., renting remote computing resources, is the main method for deploying applica-
tions at scale. It has eventually reflected on the architecture of the applications: we observe
a trend of “cloud native” designs. Focusing on Serverless, applications are designed to de-
ployed on Function-as-a-Service (FaaS) platforms. It means that their features are served by
composing and replicating simple functions, as illustrated in fig. fI.

Ve

N\ 4 A
Node Node

Fn Al T
') — b maA2
A FnA3

Fn B Fn B2 H
L
\. ’\\r\/)
1 v |
Request > Faa$ platform Response >

Figure 1: Serving a request with a FaaS application.

|
[

It is characterized by the huge number of instances of those functions, the fast rate they
are created, used and destroyed, and their quick individual execution time. It makes it hard
to understand a critical part of their behavior on the systems: their power usage.

Indeed, existing power meter solutions are not fit for the properties of FaaS. Beyond the
most basic meters that only measure the global consumption of power of the physical ma-
chines, software-defined power meters try to give meaningful information about applications.
Most often, they rely on some previous training that requires a lot of data and time. This limit
makes them largely impractical, especially in FaaS environments, because the requirement is
to understand the power usage behavior of user-provided workloads that is by definition un-

mathieu.bacou@telecom-sudparis.eu
romain.rouvoy@univ-lille.fr

known at first. To deal with this constraint, although not specifically in FaaS environments,
the French Inria team Spirals developed PoweRAPI [7]. Citing the companion paper, Pow-
ERAPI is “a software toolkit for assembling software power meters, [...] to monitor power
consumption of software”.

Of interest is POWERAPI’s ability to estimate power consumption at different granularity
levels: process, thread, container, virtual machine, etc. Indeed, FaaS platforms are built as
deep and distributed stacks of software system layers, including operating systems, hyper-
visor, cluster orchestrators, language runtimes, etc. Furthermore, power models used by
PowEeRAPI are continuously self-calibrated to consider current execution conditions of the
machine hosting the software. This is an important feature for FaaS servers, which work-
loads can vary greatly over short periods of time.

Nonetheless, while a promising base, POWERAPI suffers from design- and system-level lim-
its shared by other power meters that monitor at the container level, and have been designed
with micro-services in mind [8, [1, 5]. Those limits make them unfit for the characteristics of
Faa$S given above. In parallel, the software project FAASLoAD [3, 4] was started to provide a
solution to the issues of monitoring serverless functions. FAASLOAD can inject a workload
into a serverless platform, and collect data at the level of function instances. However it is
currently limited to performance data collected by PERF [6] and BLKTRACE [2].

2 Goals

In the POWERFUL SERVERLESS projet, the goal is to tackle the challenges of monitoring the
power usage of Serverless functions. By leveraging the existing infrastructure of FAASLoAD,
and the software-defined power meter solution of POWERAPI, the proposed work is to explore
the research issues linked to:

« adapting power usage measurement to the properties of FaaS: scale of instances to
monitor, special life cycle, and quick execution time;

— how can power usage modeling benefit from the properties of FaaS, what are the
impacts of those properties on the classical assumptions about this modeling, ...

« bringing the system layers up to the job of power usage measurement of Serverless
functions: high frequency, and high concurrency of metrics collection;

- do the hardware and the kernel expose the necessary information at the necessary
frequency, granularity, with enough scalability, ...

3 Work environment

The student(s) will work under the direct supervision of Mathieu Bacou, maintainer of FAASLoAD,
and under the supervision of Romain Rouvoy, a core contributor and director of POWERAPI
working in Lille. They will integrate into the research team Benagil of Inria and the Parallel
and Distributed Systems (PDS) team of the CS department of Télécom SudParis.

Technology-wise, the student(s) will gain experience in bleeding-edge cloud infrastruc-
tures, with FaaS platforms (mainly Apache OpenWhisk), and cluster management (contain-
ers, Kubernetes) applied to state-of-the-art issues of the cloud. Development can be expected
in Python (both for FAASLoAD and POwERAPI) as well as systems language (C for POWERAPI
and work in the Linux kernels, otherwise left to the students’ preference).

References

(1]

Marcelo Amaral et al. “Process-Based Efficient Power Level Exporter”. In: 17th IEEE International Confer-
ence on Cloud Computing, CLOUD 2024, Shenzhen, China, July 7-13, 2024. Ed. by Rong N. Chang et al.
IEEE, 2024, pp. 456-467. po1: 10.1109/CLOUD62652.2024.00058. URL: https://doi.org/10.
1109/CLOUD62652.2024.00058.

Jens Axboe. Block IO Tracing. Computer Software. 2006. URL: https://git.kernel.org/pub/scm/
linux/kernel/git/axboe/blktrace.git/about/.

Mathieu Bacou. “FaaSLoad: Fine-Grained Performance and Resource Measurement for Function-As-a-
Service”. In: 28th International Conference on Principles of Distributed Systems, OPODIS 2024, December
11-13, 2024, Lucca, Italy. Ed. by Silvia Bonomi et al. Vol. 324. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fur Informatik, 2024, 22:1-22:21. por: 10 .4230/LIPICS . OPODIS. 2024 .22. URL: https://doi.
0rg/10.4230/LIPIcs.0OPODIS.2024.22.

Mathieu Bacou. FaaSLoad: Function-as-a-Service workload injector. Version 2.1.0. Computer Software. 2024.
URL: https://gitlab.com/faasload/faasload.

Rolando Brondolin, Tommaso Sardelli, and Marco D. Santambrogio. “DEEP-Mon: Dynamic and Energy
Efficient Power Monitoring for Container-Based Infrastructures”. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2018, Vancouver, BC, Canada, May 21-25,
2018. IEEE Computer Society, 2018, pp. 676-684. DOI1: 10 . 1109 /IPDPSW.2018.00110. URL: https:
//doi.org/10.1109/IPDPSW.2018.00110.

Linux kernel contributors. perf: Linux profiling with performance counters. Computer Software. 2009. URL:
https://perf.wiki.kernel.org/index.php/Main Page.

Guillaume Fieni et al. “PowerAPIL: A Python framework for building software-defined power meters”. In:
J. Open Source Softw. 9.98 (2024), p. 6670. Do1: 10.21105/J0SS.06670. URL: https://doi.org/10.
21105/j0ss5.06670.

Jan Treibig, Georg Hager, and Gerhard Wellein. “LIKWID: A Lightweight Performance-Oriented Tool
Suite for x86 Multicore Environments”. In: 39th International Conference on Parallel Processing, ICPP Work-
shops 2010, San Diego, California, USA, 13-16 September 2010. Ed. by Wang-Chien Lee and Xin Yuan. IEEE
Computer Society, 2010, pp. 207-216. po1: 10.1109/ICPPW.2010.38. URL: https://doi.org/10.
1109/ICPPW.2010.38.

https://doi.org/10.1109/CLOUD62652.2024.00058
https://doi.org/10.1109/CLOUD62652.2024.00058
https://doi.org/10.1109/CLOUD62652.2024.00058
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/about/
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git/about/
https://doi.org/10.4230/LIPICS.OPODIS.2024.22
https://doi.org/10.4230/LIPIcs.OPODIS.2024.22
https://doi.org/10.4230/LIPIcs.OPODIS.2024.22
https://gitlab.com/faasload/faasload
https://doi.org/10.1109/IPDPSW.2018.00110
https://doi.org/10.1109/IPDPSW.2018.00110
https://doi.org/10.1109/IPDPSW.2018.00110
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.21105/JOSS.06670
https://doi.org/10.21105/joss.06670
https://doi.org/10.21105/joss.06670
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38

	Context
	Goals
	Work environment

