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1 Context
Cloud, i.e., renting remote computing resources, is the main method for deploying applica-
tions at scale. It has eventually reflected on the architecture of the applications: we observe
a trend of “cloud native” designs. Focusing on Serverless, applications are designed to de-
ployed on Function-as-a-Service (FaaS) platforms. It means that their features are served by
composing and replicating simple functions, as illustrated in fig. 1.
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Figure 1: Serving a request with a FaaS application.

The current design of the software stack of FaaS platforms has emerged from existing
container clusters orchestrators based on virtual nodes, that targeted the model of micro-
services. It results in a mismatch between the properties of the stack, and its usage. We
identify this discrepancy as a source of two main challenges faced by FaaS platforms:

Resource overhead. The many layers and roles in a micro-services stack converted to a
FaaS stack, which must now individually manage user function instances, have lead to huge
resource overheads [8], thus reducing the cost-effectiveness of FaaS data-centers:

• CPU and memory overheads, as costly abstractions are stacked without concert [5];
• disk overheads, because sandboxes are based on badly-shared container images [13];
• networking overheads, due to bad scheduling and costly virtual networking [12].
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Startup latency. If no function instance is available, a FaaS platform must first start one
up, on the critical path of serving a request: this is the issue of cold starts [6]. They incur
significant latency overheads [11, 3], that are amplified by every layer of the current FaaS
stack, thus reducing the usefulness of the FaaS paradigm:

• each layer gets in the way of provisioning the sandbox and loading the user workload;
• the stack lacks active collaboration, both vertically (i.e., across layers) and horizontally
(i.e., in every layer throughout the cluster).

Those challenges cover two components: the cluster orchestrator, and function sandboxes.

Cluster orchestrator. Previous works [5, 9] have established that cluster orchestration
made for microservices is a very bad fit: it is too complex (in architecture and abstractions),
and it offers too many guarantees (e.g., for fault tolerance) that are unnecessary for FaaS.
That makes them very slow due to I/O and synchronization operations on the critical paths.

Function sandboxes. The FaaS stack is based on some combination of hardware-based
(HW) virtualization (e.g., virtual machines with QEMU/KVM [2, 7]) and software-based (SW)
virtualization (e.g., containers with containerd [4]). Existing works tried to tackle the issues
of the HW+SW FaaS stack, by integrating more closely the SW into the HW virtualization
for security purposes [1], or by focusing on efficient SW virtualization despite the HW [10].

2 Goals
In the ngFaaS project, we have the goal of designing the next-generation FaaS stack.

Previous works missed the opportunity to holistically redesign the FaaS stack based on FaaS
requirements and principles. Thus, resource usage overhead remains (it is only moved away
from the SW+HW virtualization stack), and can only be alleviated. Moreover, the startup
latency remains a critical issue because cold starts cannot be avoided entirely: either all
functions benefit from the previous techniques, inflating resource usage to absurd amounts;
or only the most popular ones do, but then the other ones experience cold starts [3].

With ngFaaS, we will start from the latest developments concerning the cluster orchestra-
tor, to include these advances into a novel design for the FaaS stack that provides function
sandboxes by using HW and SW virtualization in active collaboration. The work will be to
study existing solutions in HW and SW virtualization, identify opportunities to improve the
state of function sandboxes, and propose and implement new designs to tackle the issues of
resource usage and startup latency.

In details, the student will be tasked with:

1. experimenting with state-of-the-art container engines (yet to be determined);
2. experimenting with Firecracker [1], a state-of-the-art hypervisor for functions;
3. experimenting with Dirigent [5], the state-of-the-art Serverless cluster orchestrator,

and analyzing its impact on the function sandboxes stack;



4. analyzing opportunities to build a more efficient sandboxing stack by making both
virtualization layers actively collaborate;

5. implementing and evaluating proposals to employ those opportunities.

3 Work environment
The student will work under the direct supervision of Mathieu Bacou. They will integrate
into the research team Benagil of Inria and the Parallel and Distributed Systems (PDS) team
of the CS department of Télécom SudParis.

Technology-wise, the student(s) will gain experience in bleeding-edge system components
of cloud and FaaS platforms, including virtualization layers (hypervisor and container run-
times). Development can be expected in systems language (mostly C/C++, possibly Go or
Rust, otherwise left to the students’ preference).
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