Building Scalable Intelligent
Information Systems

Yanlei Diao and
Angelos-Christos Anadiotis

Ecole Polytechnique

Institut Polytechnique de Paris

@ INSTITUT
g"O\: POLYTECHNIQUE

Y DE PARIS

loana Manolescu, Inria & Ecole Polytechnique 22/01/2021



CEDAR: Rich Data Analytics at Cloud Scale

Yanlei Diao loana Manolescu  Angelos-Christos Anadiotis

A range of research projects for cloud and scalable data analytics:
1.

2.

A Unified Data Analytics Optimizer for Cloud Computing (Diao)

Elastically Scaling Heterogeneous Workloads in Virtualized Servers
(Anadiotis)

Optimizing Big Data Computations: Queries and Algebra in a Single
Framework (Manolescu)
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BigFastData Bfel?ir;lnng a New Horizon of Big and Fast Data Analysis through Integratea Algorithm

European
Research

- Grand Challenge
Design an algorithmic foundation that enables the
development of all necessary pillars of big & fast data
analysis L.
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cuoren _ 1. A Unified Data Analytics Optimizer for Cloud Computing
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User

4 Cloud data analytics involves millions of ) | Objectives
jobs and 100’s thousands of machines.
What is the best way to allocate resources

and execute all the jobs?

Green
Computing

J

* In-situ modeling of user objectives
for analytical tasks based on
runtime observations and Deep
Learning

* Multi-objective optimization
automatically adapts cluster and cloud
resources to user objectives
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A Multi-Objective Optimizer for Cloud Data Analytics

User requests | Unified Data Analytics Optimizer (UDAO)

for scheduled
workloads
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1) Time constraints: compute
the Pareto set within 1-2
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Multi-Objective Optimization

Problem 111.1. Multi-Objective Optlmlzagon (MOO). Pareto E}
Filx) = 1(x) optimalit o
argmin f(x)= 4 .. 5 D P y g
Fr(x) = «(x) =
<t x2~vRA * Solution set :
- FF <Fix)<F/, i=1..,k * Illustrates tradeoffs Latency, N

The Progressive Frontier (PF) approach transforms MOO into a series of
single-objective constrained optimization (CO) problems, with each CO returning a

Pareto point.

\d Proposition I11.1. If we start the I terative Middle Point Probes
procedure from the initial Utopia and Nadir points, and let it
» . terminate until the uncertain space becomes empty, then in the
L4 2D case, our procedure guarantess to find all the Pareto points
& if they are finite. In high-dimensional cases, it is guaranteed

A . to find a subset of Pareto optimal points.

O FeiSong, et al. Spark-based Cloud Data Analytics using Multi-Objective Optimization. IEEE International Conference on Data Engineering (ICDE),
2021.
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Progressive Frontier Algorithm

N)
T

3. Further use parallel computing to explore multiple subregions simultaneously

An incremental, uncertainty aware algorithm

= Incremental: finding just one Pareto optimal point is expensive, so find more points incrementally
= Uncertainty aware: the next Pareto point is returned from the most uncertain region

2. Fast, approximate solver for each constrained optimization (CO) problem

= Finding a Pareto optimal point is expensive due to MINLP and complex learned models
=  Design a multi-objective gradient descent method using custom loss function

l—

X" = argmin Fi(x) [1]

X

subjectto Fi < Fi(x) <FYy [2]

Fe <Fe(x) <F¢
0<xg<1 d=12...,D [3]
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PF outperforms classic MOO, Evolutional, and Bayesian Optimization methods, by recommending from a
Pareto set within 1-2 seconds

Latency (seconds)
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PF outperforms a STOA tuning system with 26%-49% reduction of running time while adapting to different
user preferences across objectives
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4. LlastlCdlly sSCdllllg 11eilerogeilcous worklOdds 11l viltudllZed
Servers

Stateful data processi
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LlastiCally sSCallllg 1netelrogernncous WoOrkiodas 111 virtuaiiZc
Servers

Elastic scale-up virtualization stack

Application Application Application

Virtual Hotplug Device

Gues  Virtual Machine Guest Hotplug Driver

Host Hotplug Driver

Resource Manager
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Thank You!
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