Non uniform memory architectures

Master in computer science of IP Paris
Master CHPS of Paris Saclay

Gaél Thomas

We need computing power

2 Multicore Programming

Non-Uniform Memory Architectures

The computing power is in the CPU

Multicore Programming Non-Uniform Memory Architectures

QTUT
C []
\e <
o 2
m %
<
‘-&0 g
&
0 S
§ 3po)

(Old) computing power trends

7 b Moore’s low: #transistors x2 each 1.5 year
:I_O6 R

: . . # transistors (thousands)
ol S S T S R S o ~ Single step Perf (SpecINT)
104 _ ... S

: : : ; °e 9 . ,' Frequency (MHZ)

10° b ----- .. — processing power
102€
10 ¢
10° F

1975 1980 1985 1990 1995 2000 2005

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Multicore Programming Non-Uniform Memory Architectures

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

But frequency increases = electrical
power increases

10" F Washing machine

Helicopter GEN H-4
(4 passenger)

10° L

10° b

10° b

10° b

10° |

10' b

10° |

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Multicore Programming Non-Uniform Memory Architectures

TUT
S []
\e <
o
0,
m <
<
: §
; S
§ 3po)

Fortunately, the Moore’s law still hold

_# transistors

- (Watts)

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Multicore Programming Non-Uniform Memory Architectures

10 _ : e Typical (electrical) power

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Today: we increase power by increasing
the number of cores

10’

10

10

10° ¢

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

6
5

10° b

10° b

10° |

10' b

of

_# transistors

* . E

Single step Perf
(SpecINT)

1975 1980 1985 1990 1995 2000 2005 2010 2015

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

But programming a multicore is hard

#include <stdlib.h> On my laptop at 2k€
(2 cores at 2.2GHz)
#define N 100000000 $ time /bip

real 0mo0.474s
int main(int argc, char **argv) {
int* a = malloc(sizeof(int) * N);

for(int i=1; i<N; i++) { On my server at 15k€
a[i] = a[i] * a[i-1]; (48 cores at 2.2GHz)

§ $ time ./bip
} real 0Om1.142s

Not really what we can expect

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Multicore Programming Non-Uniform Memory Architectures

Multicores radically change the way
we design applications

B We have to parallelize our applications

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

Multicores radically change the way
we design applications

B We have to parallelize our applications

B And our parallel algorithms have to scale

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

Multicores radically change the way
we design applications

B We have to parallelize our applications

B And our parallel algorithms have to scale

But that’s not enough...

We have to handle complex memory architectures

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

Lozi@internship11

But memory access latency varies a lot

Core 0 allocates, core 0 accesses => ~5 cycles
| Core 3 allocates, core 0 accesses => ~50 cycles

Core 15 allocates, core 0 accesses => ~275 cycles

Core 20 allocates, core 0 accesses => ~380 cycles

Latency (cycles)

core that accesses

the memory # core that allocates

the memory

., Benchmark : memal on a 48 cores/4 sockets with 128GB (AMD) ':0\,

We have cache effects

S
~50ycles$ \L \L ¢ ¢ ¢

Ll L1 L1 LI L1 L1

~ 15 cycles \L \L \L \l/ \l/ \l/

L2 L2 L2 L2 L2 L2

~ 50 cycles ‘l‘ ‘l‘ ‘l‘ ‘l‘ xlz xlz
L3

v

5 "0 :
13 Multicore Programming Non-Uniform Memory Architectures) D’v@“

And, since a single bus does not

scale...

RAM

RAM

14

5 "‘ :
Multicore Programming Non-Uniform Memory Architectures) 5&'

..we have complex architectures

Total: 64 cores/128 hyperthreads, 256GB
(32x the power of my macbook for 15k€)

|||||

4 x Intel Xeon GOLD 6130
16 cores/32 hyperthreads

; IllIIIIIIII|II||II|||"H Il|II|II|IIIII|I|IMI‘II|
tlece e L

16 x 8GB
Superrmcro X11QPH+ aj'.o
15 Multicore Programming Non-Uniform Memory Architectures) #’

...we have complex architectures

CPuz PEY PCH D08-2-CPU1 | l

chuzp

IICPUi FE3

U1

U

urPR Ul
<

CPU3
PE3 PER PE1 DM
124 ; » . ¥
n ks |- Notes: 1. 2033 MHz memory is supported =
& by 2nd Gen Scalable-SP (B20062xx series) I
3 2 procassoes 2L ;
o o U 2. DOPNIM memcry is suppomed by 2nd (=] 0
. Gen Scalable-57 (8200625052504 2xx
Supermicro X11QPH+ s61i68) processons,
16 Multicore Programming Non-Uniform Memory Architectures

A

Q
[1

Tu
\’:“ T
0 [

§ 3po)

4, <
’bg o?

17

and non uniform memory accesses

aCCCSS

Fast \
access RAM RAM RAM Node
(—n i r
il alelle alelle B
PCle (R O | o
alelale alelale IIII\
I I Core
aRSS RASA [RASA
PCle o Interconnect
alelale alelale alelale
[[[
RAM RAM RAM
Multicore Programming Non-Uniform Memory Architectures) %"

18

and non uniform memory accesses
On our 48-core AMD with 8 nodes (6 cores per node)

- Local memory access : 155 cycles
- One hop =275 cycles
- Two hops = 380 cycles

) X2’5

RAM RAM RAM Domain
N N r
il il EEEE s
PCIc |Hi| (O (M| (RN (| =
il il Illl,\
I I I Core
anmn AARA AARR
Fele i Interconnect
il il il
[] [] []
RAM RAM RAM
Multicore Programming Non-Uniform Memory Architectures) «J‘

Memory access latency can collapse

When all the cores access the same node

19

(but different cache lines)

Mul

icore Programming

Non-Un

870 cycles
(6 times a local access)

<0 Cs,
%
form Memory Architectures D .,’,»“.
E

On a NUMA architecture, we need
memory placement policies

- To avoid the overload of a single NUMA domain
- To avoid the overload of interconnect links

- To enforce memory access locality

20 Multicore Programming Non-Uniform Memory Architectures

TUT

S []
S’ Py
o
4 c
m <
<
3 0’:’
e, 8

§ 3po)

21

HowTo: NUMA placement policy

Step 1: choose the physical address of a data

because the physical address space 1s partitioned among the domains

O n-1

RAM

n 2n-1

RAM

2n 3n-1

PCle

PCle

RAM

3n 4n - 1

Multicore Programming

) (|
o o
[[
RAM RAM
4n 5n-1 5n 6n-1

Non-Uniform Memory Architectures

YT

v°\' EC‘&
° 2
~ Q
=) c
2 . m

W, @

bg o

HowTo: NUMA placement policy

Step 2: leverage the page table

Maps a virtual address to a specific node by
mapping the virtual address to a page that belongs to the node

Memory space

A

Virtual address space

Page of a process
Physical
Address
Space

Node 0 Node 1 Node 2

;". -
22 Multicore Programming Non-Uniform Memory Architectures) q"

HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap (0, sizeof (*x), ..);

Y Virtual address space

Page of a process
M /
Physical
Address
Space

Node 0 Node 1 Node 2

;"0 -
23 Multicore Programming Non-Uniform Memory Architectures) #4"

HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap (0, sizeof (*x), ..);
// and requires pages from pode 2
mbind(x, sizeof (*x), 2);

Y Virtual address space

Page of a process
M / \
Physical
Address
Space

Node 0 Node 1 Node 2

;"0 -
24 Multicore Programming Non-Uniform Memory Architectures) q“’

Main questions

- Does NUMA effect matters in practice?

- If yes, can we mitigate this effect?

25 Multicore Programming Non-Uniform Memory Architectures

In theory, NUMA matters

B Abstract cache-unfriendly application
* 50% of the instructions access memory
* 30% of the accesses in L1 cache
* 30% of the accesses in L2 cache
* 30% of the accesses in L3 cache

B Comparison between best and worst NUMA placements
* Best: all accesses to local node = ~ 32 cycles/insn

* Worst: all accesses to an overloaded node = ~ 156 cycles/insn
= overhead of 385% in the worst case

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

Multicore Programming Non-Uniform Memory Architectures

In theory, NUMA matters

B Abstract cache-friendly application
* 50% of the instructions access memory
* 70% of the accesses in L1 cache
* 70% of the accesses in L2 cache
* 70% of the accesses in L3 cache

B Comparison between best and worst NUMA placements
* Best: all accesses to local node = ~ 7 cycles/insn

* Worst: all accesses to an overloaded node = ~ 17 cycles/insn
= overhead of 137% in the worst case

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

First study

B Goal

* Understand how Linux manages NUMA
* Understand how applications react to NUMA

B How:

* Study a panel of 29 applications from 5 benchmarks
(NPB, Parsec, Mosbench, X-stream, YCSB)

* Evaluate various NUMA management policies

Multicore Programming Non-Uniform Memory Architectures

<\TUT
S [J
N Ry
o
>
%
3
&/
o
>

The hand-tuned policy

B Manually place the memory address ranges on the nodes

Memory range 1

)\
[|

Page
Table
Physical

Memory range 2

)\
[|

Virtual address space

of a process

Address
Space

Node 0

Multicore Programming

Node 1 Node 2

Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The hand-tuned policy

B Manually place the memory address ranges on the nodes
+ Tune the memory placement for an application
- Alot of engineering effort for only a single application/hardware

Memory range 1 Memory range 2

I I
[| [|

Virtual address space

of a process
Page
Table
Physical

Address
Space

Node 0 Node 1 Node 2

Multicore Programming Non-Uniform Memory Architectures

The hand-tuned policy on Linux

B Hand-tuned thread placement
* setaffinity(set of cores): for all the threads of a process
* pthread_setaffinity(set of cores): for a single thread

B Hand-tuned memory placement

* mbind(virtual address range, set of nodes)
(granularity of a 4k-page)

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The interleaved policy

B Round-robin from all the nodes

of a process

Page

TW\
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures

Virtual address space

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The interleaved policy

B Round-robin from all the nodes
+ Balance the load on all the nodes = no overloaded node
- Many remote accesses = interconnect can saturate

Virtual address space
of a process

Page

Table \
Physical
Address
Space
Node 0 Node 1 Node 2 '.\
Multicore Programming Non-Uniform Memory Architectures E“"Q"m

The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1 S

of a process

Page

y Not yet mapped
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures

Virtual address space

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1

Memory access

of a process

Page

e
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures

Virtual address space

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1

Memory access

of a process

Page

y //Iap from node 1
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures

Virtual address space

(\TUT
G []
\e <
)
oA
%
3
(24
o
>

The first-touch policy

B From the node that triggers the first access

+ Perfect locality and no saturation if a thread accesses its
memory

— Qverloaded nodes if some threads allocate for the others

Virtual address space
of a process

Page
Tabl
/ //Iap from node 1
Physical
Address
Space
Node 0 Node 1 Node 2 X
Multicore Programming Non-Uniform Memory Architectures E“‘!Eq;

The Carrefour policy

B Proposed by Dashti et al. (ASPLOS’15)
 Rebalance the load on all the nodes
 Prevents the contention of the interconnect

B Dynamically migrate a page
* From contended to uncontended nodes in case of contented
node

* On the node that uses the page in case of contended
iInterconnect

Multicore Programming Non-Uniform Memory Architectures

(\TUT
G []
\e <

)
oA
%
3
(24
o
>

The Carrefour policy

B Proposed by Dashti et al. (ASPLOS’15)

 Rebalance the load on all the nodes
 Prevents the contention of the interconnect

B Dynamically migrate a page
* From contended to uncontended nodes in case of contented
node

* On the node that uses the page in case of contended
iInterconnect

+ Improves locality and avoid contention in many cases

- Can lead to inefficient placements for applications with different

access patterns during the run '0.\
Multicore Programming Non-Uniform Memory Architectures D) DE%"

Evaluated policies

B Four combinations
* First-touch (Linux FT)
* First-touch with Carrefour (Linux FT/Carrefour)
* Interleaved (Linux 4K)
* Interleaved with Carrefour (Linux 4K/Carrefour)

B Only considers pages of 4KiB

Multicore Programming Non-Uniform Memory Architectures

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Evaluation of the NUMA policies

Unax FT S Lnue FTICamefoyr N Lnued =3 Linux 4K Caradour &=
35 [4K/Carrefour win <«— 4K win

i

' FT/Carrefour win

| |
, ‘ \ FT win
15} /
i} ' i .
05 } | | I | \ l
alll ||'\|| [ETY AT
L4 4 \
4% % 04 b % % 9, % 0% ‘0%, % % hb b4 m,&%%%% © 4 4
AANAN SAANARRN -J%%
¥ %,o o&/ | \
%
Speedup relative to Linux FT
Multicore ProBEiF@&@nted at Eur@&y{ﬁlif&g ﬂ’lemory Architectures 3%, q"

Evaluation of the NUMA policies

35[

2k
2 5
157

1»-
°5'_l]
0

T/

Ungo FT S Lnwe FT/Camefour Lnwed B3 Linux 4K Caodour =2

First conclusion
All the NUMA policies are important

Each application needs 1ts own NUMA policy l“-lﬂ—

& 9
)
A%
("
% %
o 43, ‘v
Speedup relative to Linux FT
Multicore Programming Non-Uniform Memory Architectures T DE%"

Second study

= Predict which NUMA policy is the best for an application

= Goal:
* Select the most efficient NUMA policy
* Understand the memory access behavior

43 Multicore Programming Non-Uniform Memory Architectures

YT

?0\' EQ&
° 2
' Ok
= c
2 m
¥ 4
%, ’@

bg o

Predict the NUMA policy

= Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

Imbalance 0% | 40% 62% | &83% | 107% | 138% | 185% | 283%
of
accessed 8 7 6 5 4 3 2 1
nodes

Perfect balance All the accesses

go to a single node

1508
44 Multicore Programming Non-Uniform Memory Architectures) g”

Predict the NUMA policy

= Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
of
accessed 8 7 6 5 4 3 2 1
nodes

\ } \ }
| |

Low 1mbalance . Highimbalance

Moderate imbalance

YT

Q0 TEc,
° 2
' Ok
= c
2 m
¥ 4
%, ’@‘

bg o®

45 Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

Low 1mbalance with first-touch
Often because we already have a good locality

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
of
accessed 8 7 6 5 4 3 2 1
nodes

\ } \ }
| |

Low 1mbalance . Highimbalance

Moderate imbalance

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Multicore Programming Non-Uniform Memory Architectures

Predict the NUMA policy

Low 1mbalance with first-touch
Often because we already have a good locality
=> keep first-touch
(1% slower than best in average)

\

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

of

accessed 8 7 6 5 4 3 2 |

nodes

\ J \ J
| |
First-touch L High imbalance
Moderate imbalance
Multicore Programming Non-Uniform Memory Architectures Ev“’é;

Predict the NUMA policy

Moderate imbalance with first-touch
First-touch roughly balances the load but locality 1s not perfect

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
of
accessed 8 7 6 5 4 3 2 1
nodes

}

Multicore Programming

|

First-touch

Moderate imbalance

\

|

. Highimbalance

Non-Uniform Memory Architectures

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Predict the NUMA policy

Moderate imbalance with first-touch
First-touch roughly balances the load but locality 1s not perfect
= use First-touch/Carrefour
(2% slower than best in average)

s

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
of
accessed 8 7 6 5 4 3 2 1
nodes

}

Multicore Programming

|

First-touch

First-touch/Carrefour

\

|

. Highimbalance

Non-Uniform Memory Architectures

(\TUT
) []
\e <
)
oA
%
3
(24
o
>

Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality
— use Interleaved/Carrefour

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

of

accessed 8 7 6 5 4 3 2 1

nodes

\ J \ J
| f
First-touch _Y_/ Interleaved/Carrefour
First-touch/Carrefour
Multicore Programming Non-Uniform Memory Architectures Ew!g“:"m

Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality
— use Interleaved/Carrefour
(2% slower than best in average)

\

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

of

accessed 8 7 6 5 4 3 2 1

nodes

\ J \ J
| f
First-touch _Y_/ Interleaved/Carrefour
First-touch/Carrefour
Multicore Programming Non-Uniform Memory Architectures %!EM:;

Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality

Second conclusion

We can reasonably predict the best NUMA policy

— of an application ”

of

aCCCooiu o v o ~ > - 1

nodes ‘ ‘ ‘

\ J \ J
| f
First-touch _Y_/ Interleaved/Carrefour
First-touch/Carrefour
Multicore Programming Non-Uniform Memory Architectures E%,'DE%"

Third study

= How a data analytic application behaves?

* Page rank query on the friendster dataset with Spark
* Heap of 40GB, JVM with the Parallel Scavenge (PS) GC

Input data

Output data

53 Multicore Programming Non-Uniform Memory Architectures

Application scalability of Spark

Bad scalability after 12 cores

50 - _Ideal scalability
40 - 5
Speedup 1n term
. 30 -
of completion .

time 20 -
10 < o * -+ PS
0~

54

1 6 12 24 36 48
#cores = #threads

Performance of Spark (40GB of heap)

Multicore Programming Non-Uniform Memory Architectures

TUT
S []
&’ P
o
(4 c
m <
<
3 0’:’
e, 8
§ 3po)

A bottleneck in the garbage collector

8000 - Time spent 1n the application
7000 - Roughly scales with the
6000 - — i

Completion 50qg number of cores

Time (s) 4000
3000 -

2000 - |
0 > 1

6 12 24 36 48
#cores = #threads

Time spent in the garbage collector
Does not seem to scale after 12 cores

s "0 :
55 Multicore Programming Non-Uniform Memory Architectures D qﬁ‘

A bottleneck in the garbage collector

The garbage collector does not scale

12
10 -

GC throughput 8

(GB collected 6 Bad scalability after 12 cores
per second) 4 } /
2
0

>

* T ——p— —

—

1 6 12 24 36 48
#cores = #threads used by the GC

Performance of the GC in Spark (40GB of heap)

:"0 -
56 Multicore Programming Non-Uniform Memory Architectures) #4"

First optimizations: synchronizations

Remove useless synchronizations in the garbage collector
- Trades the genericity of the code for better performance

Optimize the locks
Futex instead of hand tuned

Optimized lock-free queue for the work stealing

5". -
57 Multicore Programming Non-Uniform Memory Architectures oy #3’

First optimizations: synchronizations

Remove useless synchronizations in the garbage collector
- Trades the genericity of the code for better performance
Optimize the locks
Futex instead of hand tuned
Optimized lock-free queue for the work stealing

12
10 - -
8 Better performance
GC throughput - but does not solve
(GB collected 6 . the scalability issue
per second) 4
2 J
0
1 6 12 24 36 48 gidra@asplos13 Q‘\
58 Multicore Programming Non-Uniform Memory Architectures E%,'ge"m

Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1

I

|
I

9

GC Thread 0

Memory

Memory

5". -
59 Multicore Programming Non-Uniform Memory Architectures oy #3’

Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1
> >
— —
O - Oll 5
= Q:'// 'Q‘Q =
O O
= / =
/
/
GC Thread 0

5". -
60 Multicore Programming Non-Uniform Memory Architectures oy #3’

Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1

Q"//:"@ .

~

Memory

Memory

~
~

-~ Remote accesses!

GC Thread 0

61 Multicore Programming Non-Uniform Memory Architectures

TUT
S []
S’ Py
o
(4 c
m <
<
3 0’:’
e, 8
§ 3po)

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

62 Multicore Programming Non-Uniform Memory Architectures

YT

QoY EC'A,
° 2
' Ok
=3 c
2 m
v, Q
%, ’@

bg o®

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory
O
Memory

! (——=> 0
(€«e=—0

GC Thread 0 GC Thread 1

g.’o‘%
63 Multicore Programming Non-Uniform Memory Architectures oy #3’

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory

N A{ﬂ
O

Memory

GC Thread 0 GC Thread 1

g.’o‘%
64 Multicore Programming Non-Uniform Memory Architectures oy %:"

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory
O
Memory

/ /
/' M ——) §

GC Thread 0 GC Thread 1

65 Multicore Programming Non-Uniform Memory Architectures

<\TUT

G []
S’ Py
o
o ©
m <
5
3 0’:’
e, S

§ 3po)

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

O

Memory
—
Memory

GC Thread 0 GC Thread 1

g.’o‘%
66 Multicore Programming Non-Uniform Memory Architectures oy #3’

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

— 0
(e—1)

GC Thread 0 GC Thread 1

Memory
O
Memory

g.’o‘%
67 Multicore Programming Non-Uniform Memory Architectures oy %:"

Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

\
(——=>0
(€«e=—0

GC Thread 0 GC Thread 1

Memory
O
Memory

g.’o‘%
68 Multicore Programming Non-Uniform Memory Architectures oy #3’

As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access

Node O

Node 1

>

§©

@==:

O

Too many messages

69 Multicore Programming

=)

?

Q’k@
Non-Uniform Memory Architectures) #4"

As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access
Node O Node 1

o= |9
Qe
=)

Too many messages

= Inter-node references must be minimized

5"0 -
70 Multicore Programming Non-Uniform Memory Architectures) q"

As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access
Node O Node 1

O >
=)

Q=
O

Too many messages

= Inter-node references must be minimized
* Observation: a thread mostly connects objects it has allocated

Only 1% of references
between objects allocated
by different threads in Spark '.
71 Multicore Progfamming Non-Uniform Memory Architectures E%, q"

3

As is, messages degrades performance

= Problem: a message is more costly than a remote access

?

= Inter-node references must be minimized

Node O

Node 1

O
Q=

>

=)

O

Too many messages

?

* Observation: a thread mostly connects objects it has allocated

* Heuristics: allocate and let the objects on their allocation nodes

6

L3

Q’k@
Non-Uniform Memory Architectures) #4"

But few inter-node references degrade
the parallelism! /=

Node 0 Node 1

> ?

Node 1 i1dles while node 0 collects 1ts memory

5"0 :
73 Multicore Programming Non-Uniform Memory Architectures B #«“’

But few inter-node references degrade
the parallelism! /=

Node 0 Node 1

> ?

Node 1 i1dles while node 0 collects 1ts memory

= Solution: adaptive algorithm
* Local mode: send messages when not idling
* Thief mode: steal and access remote objects when idling

5". -
74 Multicore Programming Non-Uniform Memory Architectures oy #3’

Performance of NumaGiC

12
10 *
GC throughput 8 x
(GB collected 6 NumaGiC
per second) 4 . synchroPS
5 —SynchroPS + mterl.
0 PS

1 6 12 24 36 48
#cores = #threads

Performance of the GC with Spark (40GB of heap)

;"0 -
75 Multicore Programming Non-Uniform Memory Architectures) #4"

Performance of the application

50 -)
40 -]
Application 30 -
speedup . NumaGiC
in term of 20 ~_ synchroPS
completion time 10 - “+——— synchroPS + interl.
PS

1 6 12 24 36 48
#cores = #threads

Performance of Spark (40GB of heap)

Completion time divided by two gidra@asplosl5 ~qgs
P ’:

76 Multicore Programming Non-Uniform Memory Architectures

Third lessons

NUMA can have a large impact on performance
On data analytic applications written in Java

- We can design better NUMA policies than the ones proposed

77

by default in Linux
- Technically inspired by distributed systems

5". -
Multicore Programming Non-Uniform Memory Architectures oy q"

Fourth study

How a hypervisor behaves on a NUMA machine?

Study of a set of 29 parallel applications
Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)

Hypervisor overhead when we increase the #cores

78 Multicore Programming Non-Uniform Memory Architectures

YT

QO Ec,
° 2
' Ok
=3 c
2 m
v, Q
%, ’@

bg o

Fourth study

How a hypervisor behaves on a NUMA machine?

- Study of a set of 29 parallel applications
Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)

- Hypervisor overhead when we increase the #cores

With 1 core/vCPU/thread &=/ With 48 cores/vCPUs/threads /3

(= [[[=

Xen Overhead
O - NN WAEODOONODDWOWO
- 8 1 =0 o B &= .k <8)

cg.C ft.C u.C ua.C psearchy

Up to a 9.5 time slowdown 1in Xen with 48 cores
while overhead is negligible with 1 core

79 Multicore Programming on-Uniform Memory Architectures

80

Memory access latency causes the

overhead

Xen Overhead
O - NN W HAEAOVOONDDOO
]

With 1 core/vCPU/thread =T

With 48 cores/vCPUs/threads /3

[[= [[[
cg.C ft.C lu.C ua.C psearchy
Linux 48 cores =3 Xen 48 cores =3

? 2008 -
w 1800
T8 1600 [
w8 1400 F
e® 1200 |
gg 1000 r
©, 800
>0 600
g;’, 400

cg.C ft.C u.C ua.C psearchy

Multicore Programming

Non-Uniform Memory Architectures

\TUT
Ky °

o\WYTER
Q
>

(4
§ 3po)

<
’bg o?

Solution: XenNUMA

Implement generic NUMA policies in Xen
Interleaved: roughly randomize memory access
- First-touch: allocate from the node that triggers the first access
- Carrefour: dynamic policies proposed by Dashti et al.

Add a new interface between Linux and Xen
To select a NUMA policy for a process
To know which pages are allocated to a process

In order to allocate a page from the node that triggers the first access

Rewrite the memory sub-system of Xen

5". -
81 Multicore Programming Non-Uniform Memory Architectures) q"

Overhead of Xen with 48 cores/vCPUs

Settings: 48 vCPUs (pined) on the 48 pCPUs
Xen uses the default (nonexistent) NUMA policy
- XenNUMA uses the best possible NUMA policy

Xen =3 XenNUMA =
e
- 87
S 7(
£ OF
o 5
QO 2+
x{@]ﬂ]ﬂ]ﬂ][ﬂ I i m H]H]H][ﬂﬂ][ﬂ”]ﬂ]m m m m mm [l m
() {90@ 0"’/& @4@ %e 2 % %, % % % % />;. 0%, B 00@ 6% %, % 60/ % * % %“b OQ“'& O)O’)
%"290 v % %’5@?% ://é,)? % 7a e He Ko e 5, D %@%60,5: 0@%4 ‘90% s
Results:
Performance improvement of up to 700%
- Virtualization costs less than 50% for
1 12/29 applications with Xen
1 23/29 applications with XenNUMA
voron@eurosys17

82 Multicore Programming Non-Uniform Memory Architectures "

XenNUMA is not a satisfactory solution
because XenNUMA hides the topology

Prevents the use System Runtime Libraries (SLR) optimizations:

- Impossible to use NumaGiC or other application-specific
NUMA policies

- Impossible to use NUMA-aware allocators
- TCMalloc, JEMalloc

=> Bad performance for many applications

5". -
83 Multicore Programming Non-Uniform Memory Architectures oy gﬁ

Exposing the topology is nhot more

efficient

VNUMA exposes the initial NUMA topology
- But the hypervisor may change the NUMA topology at runtime

=> makes SLR and OS
work with a stale
topology

After

84 Multicore Programming

r

58

28

\

]

vNUMA

[Oﬂ
O

H

]

/ Initiallsetup \

®

]

g
O
(i

Ballooning
or Flipping

vCPU migrations VM migration

\YTe

Cs,
2
'0 E
c
<
V'

A

g e>

b

N/

Exposing the topology is not more
efficient

VNUMA exposes the initial NUMA topology

- But the hypervisor may change the NUMA topology at runtime

_ 4
=> makes SLR and OS 6x10] Interleaved
. |l vNUMA
work with a stale 5x10°F B Stale YWNUMA
topology
4x10*] i I
é 3x10% i
2x10* |
10"+
0 QO TEc,
Copy Scale Add Triad @8
85 Multicore Programming Non-Uniform Memory Architectures 3%,55.

XPV: eXtended ParaVirtualization

Expose the initial NUMA topology

- Add notifications when the NUMA topology changes
Used by the OS and the SLR to update the topology
Few lines of code changed

System # files # LOC changed
Xen 4.9 8 117

KVM from Linux 4.14 6 218

Linux 4.14 26 670

FreeBSD 11.0 23 708

HotSpot 8 3 53

TCMalloc 2.6.90 3 65

jemalloc 5.0.1 9 86

86 Multicore Programming

'.0
Non-Uniform Memory Architectures) n’v*‘?

XPV versus XenNUMA (fixed NUMA
topology)

By exposing the NUMA topology: up to 130% improvement

XenNUMA [B Interleaved BN XPV without NUMA SRL
. L1 PFT B XPV with NUMA SRL
policies
ANB
3.5
£ 3 -
3]
_C:; 2.5 ~
82 i
= 1.5 -
E 1 _
z 0.5 =
0 —
o = w2 o o) — [—
= & = z & 3 2 2, z
o, (U8} o = = = = o
S % e Z
N L: —_—
87 Multicore Programming Non-Uniform Memory Architectures) %"

XPV facing topology changes

- Xen migrates vCPUs to balance the load
- Three identical VMs
- 48 vCPUs/42 pCPUs

I Interleaved
JOFT
ANB
vNUMA
— 3| |HnOS only XPV
3 faxpv
-
g 2
9 JBB2005 milc swim

. Improvement: up to 127%
ggbui@eurosys19 Multicore Programming Non-Uniform Memory Architectures

To take away

NUMA can have a large impact on performance
On many parallel applications (both native and Java)

- We can already significantly improve performances with
generic NUMA policies

« We can predict which generic policy can give the best
performance

For some applications/SLRs, we need specific policies
- JVM, Databases, locks, NUMA-aware allocators...

- We can mitigate NUMA effects even in hypervisors

: "o‘%
89 Multicore Programming Non-Uniform Memory Architectures oy gﬁ

