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We need computing power
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Non-Uniform Memory Architectures




The computing power is in the CPU
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(Old) computing power trends

7 b Moore’s low: #transistors x2 each 1.5 year
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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But frequency increases = electrical
power increases

10" F Washing machine

Helicopter GEN H-4
(4 passenger)
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Multicore Programming Non-Uniform Memory Architectures

TUT
S [ ]
\e <
o
0,
m <
<
: §
; S
§ 3po)



Fortunately, the Moore’s law still hold

_# transistors

- (Watts)
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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Today: we increase power by increasing
the number of cores
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Dotted line extrapolations by C. Moore
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But programming a multicore is hard

#include <stdlib.h> On my laptop at 2k€
(2 cores at 2.2GHz)
#define N 100000000 $ time /bip

real 0mo0.474s
int main(int argc, char **argv) {
int* a = malloc(sizeof(int) * N);

for(int i=1; i<N; i++) { On my server at 15k€
a[i] = a[i] * a[i-1]; (48 cores at 2.2GHz)

§ $ time ./bip
} real 0Om1.142s

Not really what we can expect
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Multicores radically change the way
we design applications

B We have to parallelize our applications
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Multicores radically change the way
we design applications

B We have to parallelize our applications

B And our parallel algorithms have to scale
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Multicores radically change the way
we design applications

B We have to parallelize our applications

B And our parallel algorithms have to scale

But that’s not enough...

We have to handle complex memory architectures
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Lozi@internship11

But memory access latency varies a lot

Core 0 allocates, core 0 accesses => ~5 cycles
| Core 3 allocates, core 0 accesses => ~50 cycles

Core 15 allocates, core 0 accesses => ~275 cycles

Core 20 allocates, core 0 accesses => ~380 cycles

Latency (cycles)

# core that accesses

the memory # core that allocates

the memory

., Benchmark : memal on a 48 cores/4 sockets with 128GB (AMD) ':0\,



We have cache effects
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And, since a single bus does not

scale...

RAM

RAM
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..we have complex architectures

Total: 64 cores/128 hyperthreads, 256GB
(32x the power of my macbook for 15k€)

|||||

4 x Intel Xeon GOLD 6130
16 cores/32 hyperthreads

; IllIIIIIIII|II||II|||"H Il|II|II|IIIII|I|IMI‘II|
tlece e L

16 x 8GB
Superrmcro X11QPH+ aj'.o
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...we have complex architectures

CPuz PEY PCH D08-2-CPU1 | l

chuzp

IICPUi FE3

U1

U

urPR Ul
<

CPU3
PE3 PER PE1 DM
124 ; » . ¥
n ks |- Notes: 1. 2033 MHz memory is supported =
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o o U 2. DOPNIM memcry is suppomed by 2nd (=] 0
. Gen Scalable-57 (8200625052504 2xx
Supermicro X11QPH+ s61i68) processons,
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and non uniform memory accesses

aCCCSS

Fast \
access RAM RAM RAM Node
(—n i r
il alelle alelle B
PCle (R O | o
alelale alelale IIII\
I I Core
aRSS RASA [RASA
PCle o Interconnect
alelale alelale alelale
[ [ [
RAM RAM RAM
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and non uniform memory accesses
On our 48-core AMD with 8 nodes (6 cores per node)

- Local memory access : 155 cycles
- One hop =275 cycles
- Two hops = 380 cycles

) X2’5

RAM RAM RAM Domain
N N r
il il EEEE s
PCIc |Hi| (O (M| (RN (| =
il il Illl,\
I I I Core
anmn  AARA AARR
Fele i Interconnect
il il il
[] [] []
RAM RAM RAM
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Memory access latency can collapse

When all the cores access the same node

19

(but different cache lines)
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On a NUMA architecture, we need
memory placement policies

- To avoid the overload of a single NUMA domain
- To avoid the overload of interconnect links

- To enforce memory access locality

20 Multicore Programming Non-Uniform Memory Architectures
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HowTo: NUMA placement policy

Step 1: choose the physical address of a data

because the physical address space 1s partitioned among the domains

O n-1

RAM

n 2n-1

RAM

2n 3n-1

PCle

PCle

RAM

3n 4n - 1

Multicore Programming

) (|
o o
[ [
RAM RAM
4n 5n-1 5n 6n-1

Non-Uniform Memory Architectures

YT

v°\' EC‘&
° 2
~ Q
=) c
2 . m

W, @

bg o



HowTo: NUMA placement policy

Step 2: leverage the page table

Maps a virtual address to a specific node by
mapping the virtual address to a page that belongs to the node

Memory space

A

Virtual address space

Page of a process
Physical
Address
Space

Node 0 Node 1 Node 2

;". -
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HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap (0, sizeof (*x), ..);

Y Virtual address space

Page of a process
M /
Physical
Address
Space

Node 0 Node 1 Node 2

;"0 -
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HowTo: NUMA placement policy

// reserve a virtual address space
struct x* x = mmap (0, sizeof (*x), ..);
// and requires pages from pode 2
mbind(x, sizeof (*x), 2);

Y Virtual address space

Page of a process
M / \
Physical
Address
Space

Node 0 Node 1 Node 2

;"0 -
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Main questions

- Does NUMA effect matters in practice?

- If yes, can we mitigate this effect?

25 Multicore Programming Non-Uniform Memory Architectures



In theory, NUMA matters

B Abstract cache-unfriendly application
* 50% of the instructions access memory
* 30% of the accesses in L1 cache
* 30% of the accesses in L2 cache
* 30% of the accesses in L3 cache

B Comparison between best and worst NUMA placements
* Best: all accesses to local node = ~ 32 cycles/insn

* Worst: all accesses to an overloaded node = ~ 156 cycles/insn
= overhead of 385% in the worst case
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In theory, NUMA matters

B Abstract cache-friendly application
* 50% of the instructions access memory
* 70% of the accesses in L1 cache
* 70% of the accesses in L2 cache
* 70% of the accesses in L3 cache

B Comparison between best and worst NUMA placements
* Best: all accesses to local node = ~ 7 cycles/insn

* Worst: all accesses to an overloaded node = ~ 17 cycles/insn
= overhead of 137% in the worst case
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First study

B Goal

* Understand how Linux manages NUMA
* Understand how applications react to NUMA

B How:

* Study a panel of 29 applications from 5 benchmarks
(NPB, Parsec, Mosbench, X-stream, YCSB)

* Evaluate various NUMA management policies
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The hand-tuned policy

B Manually place the memory address ranges on the nodes

Memory range 1

)\
[ |

Page
Table
Physical

Memory range 2

)\
[ |

Virtual address space

of a process

Address
Space

Node 0

Multicore Programming
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The hand-tuned policy

B Manually place the memory address ranges on the nodes
+ Tune the memory placement for an application
- Alot of engineering effort for only a single application/hardware

Memory range 1  Memory range 2

I I
[ | [ |

Virtual address space

of a process
Page
Table
Physical

Address
Space

Node 0 Node 1 Node 2
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The hand-tuned policy on Linux

B Hand-tuned thread placement
* setaffinity(set of cores): for all the threads of a process
* pthread_setaffinity(set of cores): for a single thread

B Hand-tuned memory placement

* mbind(virtual address range, set of nodes)
(granularity of a 4k-page)
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The interleaved policy

B Round-robin from all the nodes

of a process

Page

TW\
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures
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The interleaved policy

B Round-robin from all the nodes
+ Balance the load on all the nodes = no overloaded node
- Many remote accesses = interconnect can saturate

Virtual address space
of a process

Page

Table \
Physical
Address
Space
Node 0 Node 1 Node 2 '.\
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The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1 S

of a process

Page

y Not yet mapped
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures
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The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1

Memory access

of a process

Page

e
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures
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The first-touch policy

B From the node that triggers the first access
* Relies on the lazy mapping used in Linux

Thread running on node 1

Memory access

of a process

Page

y //Iap from node 1
Physical
Address
Space
Node 0 Node 1 Node 2
Multicore Programming Non-Uniform Memory Architectures
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The first-touch policy

B From the node that triggers the first access

+ Perfect locality and no saturation if a thread accesses its
memory

— Qverloaded nodes if some threads allocate for the others

Virtual address space
of a process

Page
Tabl
/ //Iap from node 1
Physical
Address
Space
Node 0 Node 1 Node 2 X
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The Carrefour policy

B Proposed by Dashti et al. (ASPLOS’15)
 Rebalance the load on all the nodes
 Prevents the contention of the interconnect

B Dynamically migrate a page
* From contended to uncontended nodes in case of contented
node

* On the node that uses the page in case of contended
iInterconnect

Multicore Programming Non-Uniform Memory Architectures
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The Carrefour policy

B Proposed by Dashti et al. (ASPLOS’15)

 Rebalance the load on all the nodes
 Prevents the contention of the interconnect

B Dynamically migrate a page
* From contended to uncontended nodes in case of contented
node

* On the node that uses the page in case of contended
iInterconnect

+ Improves locality and avoid contention in many cases

- Can lead to inefficient placements for applications with different

access patterns during the run '0.\
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Evaluated policies

B Four combinations
* First-touch (Linux FT)
* First-touch with Carrefour (Linux FT/Carrefour)
* Interleaved (Linux 4K)
* Interleaved with Carrefour (Linux 4K/Carrefour)

B Only considers pages of 4KiB
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Evaluation of the NUMA policies

Unax FT S Lnue FTICamefoyr N Lnued =3 Linux 4K Caradour &=
35 [ 4K/Carrefour win <«— 4K win

i

' FT/Carrefour win

| |
, ‘ \ FT win
15} /
i} ' i .
05 } | | I | \ l
alll ||'\|| [ETY AT
L4 4 \
4% % 04 b % % 9, % 0% ‘0%, % % hb b4 m,&%%%% © 4 4
AANAN SAANARRN -J%%
¥ %,o o&/ | \
%
Speedup relative to Linux FT
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Evaluation of the NUMA policies

35[

2k
2 5
157

1»-
°5'_l]
0

T/

Ungo FT S Lnwe FT/Camefour Lnwed B3 Linux 4K Caodour =2

First conclusion
All the NUMA policies are important

Each application needs 1ts own NUMA policy l“-lﬂ—
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Speedup relative to Linux FT
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Second study

= Predict which NUMA policy is the best for an application

= Goal:
* Select the most efficient NUMA policy
* Understand the memory access behavior

43 Multicore Programming Non-Uniform Memory Architectures
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Predict the NUMA policy

= Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

Imbalance 0% | 40% 62% | &83% | 107% | 138% | 185% | 283%
# of
accessed 8 7 6 5 4 3 2 1
nodes

Perfect balance All the accesses

go to a single node

1508
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Predict the NUMA policy

= Measure the memory access imbalance with first-touch
Relative standard deviation around the average #accesses per node

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
# of
accessed 8 7 6 5 4 3 2 1
nodes

\ } \ }
| |

Low 1mbalance . Highimbalance

Moderate imbalance

YT

Q0 TEc,
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' Ok
= c
2 m
¥ 4
%, ’@‘

bg o®
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Predict the NUMA policy

Low 1mbalance with first-touch
Often because we already have a good locality

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
# of
accessed 8 7 6 5 4 3 2 1
nodes

\ } \ }
| |

Low 1mbalance . Highimbalance

Moderate imbalance
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Predict the NUMA policy

Low 1mbalance with first-touch
Often because we already have a good locality
=> keep first-touch
(1% slower than best in average)

\

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

# of

accessed 8 7 6 5 4 3 2 |

nodes

\ J \ J
| |
First-touch L High imbalance
Moderate imbalance
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Predict the NUMA policy

Moderate imbalance with first-touch
First-touch roughly balances the load but locality 1s not perfect

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
# of
accessed 8 7 6 5 4 3 2 1
nodes

}

Multicore Programming

|

First-touch

Moderate imbalance

\

|

. Highimbalance
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Predict the NUMA policy

Moderate imbalance with first-touch
First-touch roughly balances the load but locality 1s not perfect
= use First-touch/Carrefour
(2% slower than best in average)

s

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%
# of
accessed 8 7 6 5 4 3 2 1
nodes

}

Multicore Programming

|

First-touch

First-touch/Carrefour

\

|

. Highimbalance
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Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality
— use Interleaved/Carrefour

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

# of

accessed 8 7 6 5 4 3 2 1

nodes

\ J \ J
| f
First-touch \_Y_/ Interleaved/Carrefour
First-touch/Carrefour
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Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality
— use Interleaved/Carrefour
(2% slower than best in average)

\

Imbalance 0% | 40% 62% | 83% | 107% | 138% | 185% | 283%

# of

accessed 8 7 6 5 4 3 2 1

nodes

\ J \ J
| f
First-touch \_Y_/ Interleaved/Carrefour
First-touch/Carrefour
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Predict the NUMA policy

High imbalance with first-touch
Interleaved balances the load and Carrefour improves locality

Second conclusion

We can reasonably predict the best NUMA policy

— of an application ”

# of

aCCCooiu o v o ~ > - 1

nodes ‘ ‘ ‘

\ J \ J
| f
First-touch \_Y_/ Interleaved/Carrefour
First-touch/Carrefour
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Third study

= How a data analytic application behaves?

* Page rank query on the friendster dataset with Spark
* Heap of 40GB, JVM with the Parallel Scavenge (PS) GC

Input data

Output data

53 Multicore Programming Non-Uniform Memory Architectures



Application scalability of Spark

Bad scalability after 12 cores

50 - _Ideal scalability
40 - 5
Speedup 1n term
. 30 -
of completion .

time 20 -
10 < o * -+ PS
0~

54

1 6 12 24 36 48
#cores = #threads

Performance of Spark (40GB of heap)

Multicore Programming Non-Uniform Memory Architectures

TUT
S [ ]
&’ P
o
(4 c
m <
<
3 0’:’
e, 8
§ 3po)



A bottleneck in the garbage collector

8000 - Time spent 1n the application
7000 - Roughly scales with the
6000 - — i

Completion 50qg number of cores

Time (s) 4000
3000 -

2000 - |
0 > 1

6 12 24 36 48
#cores = #threads

Time spent in the garbage collector
Does not seem to scale after 12 cores

s "0 :
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A bottleneck in the garbage collector

The garbage collector does not scale

12
10 -

GC throughput 8

(GB collected 6 Bad scalability after 12 cores
per second) 4 } /
2
0

>

* T ——p— —

—

1 6 12 24 36 48
#cores = #threads used by the GC

Performance of the GC in Spark (40GB of heap)

:"0 -
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First optimizations: synchronizations

Remove useless synchronizations in the garbage collector
- Trades the genericity of the code for better performance

Optimize the locks
Futex instead of hand tuned

Optimized lock-free queue for the work stealing

5". -
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First optimizations: synchronizations

Remove useless synchronizations in the garbage collector
- Trades the genericity of the code for better performance
Optimize the locks
Futex instead of hand tuned
Optimized lock-free queue for the work stealing

12
10 - -
8 Better performance
GC throughput - but does not solve
(GB collected 6 . the scalability issue
per second) 4
2 J
0
1 6 12 24 36 48 gidra@asplos13 Q‘\
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Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1

I

|
I

9

GC Thread 0

Memory

Memory

5". -
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Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1
> >
— —
O - Oll 5
= Q:'// 'Q‘Q =
O O
= / =
/
/
GC Thread 0

5". -
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Second optimizations: NUMAGIC

= The problem: a GC thread accesses any node

Node 0 Node 1

Q"//:"@ .

~

Memory

Memory

~
~

-~ Remote accesses!

GC Thread 0
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

62 Multicore Programming Non-Uniform Memory Architectures
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory
O
Memory

! (——=> 0
(€«e=—0

GC Thread 0 GC Thread 1

g.’o‘%
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory

N A{ﬂ
O

Memory

GC Thread 0 GC Thread 1

g.’o‘%
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

Memory
O
Memory

/ /
/' M —— ) §

GC Thread 0 GC Thread 1
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

O

Memory
—
Memory

GC Thread 0 GC Thread 1

g.’o‘%
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

— 0
(e—1)

GC Thread 0 GC Thread 1

Memory
O
Memory

g.’o‘%
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Second optimizations: NUMAGIC

= |dea: distributed memory => distributed GC design

* Trade remote accesses for messages
Node 0 Node 1

\
(——=>0
(€«e=—0

GC Thread 0 GC Thread 1

Memory
O
Memory

g.’o‘%
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As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access

Node O

Node 1

>

§©

@==:

O

Too many messages
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As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access
Node O Node 1

o= |9
Qe
=)

Too many messages

= Inter-node references must be minimized

5"0 -
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As is, messages degrades performance

pW

= Problem: a message is more costly than a remote access
Node O Node 1

O >
=)

Q=
O

Too many messages

= Inter-node references must be minimized
* Observation: a thread mostly connects objects it has allocated

Only 1% of references
between objects allocated
by different threads in Spark '.
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As is, messages degrades performance

= Problem: a message is more costly than a remote access

?

= Inter-node references must be minimized

Node O

Node 1

O
Q=

>

=)

O

Too many messages

?

* Observation: a thread mostly connects objects it has allocated

* Heuristics: allocate and let the objects on their allocation nodes

6

L3
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But few inter-node references degrade
the parallelism! /=

Node 0 Node 1

> ?

Node 1 i1dles while node 0 collects 1ts memory

5"0 :
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But few inter-node references degrade
the parallelism! /=

Node 0 Node 1

> ?

Node 1 i1dles while node 0 collects 1ts memory

= Solution: adaptive algorithm
* Local mode: send messages when not idling
* Thief mode: steal and access remote objects when idling

5". -
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Performance of NumaGiC

12
10 *
GC throughput 8 x
(GB collected 6 NumaGiC
per second) 4 . synchroPS
5 —SynchroPS + mterl.
0 PS

1 6 12 24 36 48
#cores = #threads

Performance of the GC with Spark (40GB of heap)

;"0 -
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Performance of the application

50 - )
40 - ]
Application 30 -
speedup . NumaGiC
in term of 20 ~_ synchroPS
completion time 10 - “+——— synchroPS + interl.
PS

1 6 12 24 36 48
#cores = #threads

Performance of Spark (40GB of heap)

Completion time divided by two gidra@asplosl5 ~qgs
P ’:

76 Multicore Programming Non-Uniform Memory Architectures



Third lessons

NUMA can have a large impact on performance
On data analytic applications written in Java

- We can design better NUMA policies than the ones proposed

77

by default in Linux
- Technically inspired by distributed systems

5". -
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Fourth study

How a hypervisor behaves on a NUMA machine?

Study of a set of 29 parallel applications
Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)

Hypervisor overhead when we increase the #cores

78 Multicore Programming Non-Uniform Memory Architectures
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Fourth study

How a hypervisor behaves on a NUMA machine?

- Study of a set of 29 parallel applications
Parsec, NPB, MosBench, X-stream, YCSB (Cassandra, MangoDB)

- Hypervisor overhead when we increase the #cores

With 1 core/vCPU/thread &=/ With 48 cores/vCPUs/threads /3

(= [ [ [ =

Xen Overhead
O - NN WAEODOONODDWOWO
- 8 1 =0 o B &= .k <8 )

cg.C ft.C u.C ua.C psearchy

Up to a 9.5 time slowdown 1in Xen with 48 cores
while overhead is negligible with 1 core
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Memory access latency causes the

overhead

Xen Overhead
O - NN W HAEAOVOONDDOO
]

With 1 core/vCPU/thread =T

With 48 cores/vCPUs/threads /3

[ [ = [ [ [
cg.C ft.C lu.C ua.C psearchy
Linux 48 cores =3 Xen 48 cores =3

? 2008 -
w 1800
T8 1600 [
w8 1400 F
e® 1200 |
gg 1000 r
©, 800
>0 600
g;’, 400

cg.C ft.C u.C ua.C psearchy
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Solution: XenNUMA

Implement generic NUMA policies in Xen
Interleaved: roughly randomize memory access
- First-touch: allocate from the node that triggers the first access
- Carrefour: dynamic policies proposed by Dashti et al.

Add a new interface between Linux and Xen
To select a NUMA policy for a process
To know which pages are allocated to a process

In order to allocate a page from the node that triggers the first access

Rewrite the memory sub-system of Xen

5". -
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Overhead of Xen with 48 cores/vCPUs

Settings: 48 vCPUs (pined) on the 48 pCPUs
Xen uses the default (nonexistent) NUMA policy
- XenNUMA uses the best possible NUMA policy

Xen =3 XenNUMA =
e
- 87
S 7(
£ OF
o 5
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x{@]ﬂ]ﬂ]ﬂ][ﬂ I i m H]H]H][ﬂﬂ][ﬂ”]ﬂ]m m m m mm [l m
() {90@ 0"’/& @4@ %e 2 % %, % % % % />;. 0%, B 00@ 6% %, % 60/ % * % %“b OQ“'& O)O’)
%"290 v % %’5@?% ://é,)? % 7a e He Ko e 5, D %@%60,5: 0@%4 ‘90% s
Results:
Performance improvement of up to 700%
- Virtualization costs less than 50% for
1 12/29 applications with Xen
1 23/29 applications with XenNUMA
voron@eurosys17
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XenNUMA is not a satisfactory solution
because XenNUMA hides the topology

Prevents the use System Runtime Libraries (SLR) optimizations:

- Impossible to use NumaGiC or other application-specific
NUMA policies

- Impossible to use NUMA-aware allocators
- TCMalloc, JEMalloc

=> Bad performance for many applications

5". -
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Exposing the topology is nhot more

efficient

VNUMA exposes the initial NUMA topology
- But the hypervisor may change the NUMA topology at runtime

=> makes SLR and OS
work with a stale
topology

After

84 Multicore Programming
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Exposing the topology is not more
efficient

VNUMA exposes the initial NUMA topology

- But the hypervisor may change the NUMA topology at runtime

_ 4
=> makes SLR and OS 6x10 ] Interleaved
. |l vNUMA
work with a stale 5x10°F B Stale YWNUMA
topology
4x10* ] i I
é 3x10% i
2x10* |
10"+
0 QO TEc,
Copy Scale Add Triad @8
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XPV: eXtended ParaVirtualization

Expose the initial NUMA topology

- Add notifications when the NUMA topology changes
Used by the OS and the SLR to update the topology
Few lines of code changed

System # files # LOC changed
Xen 4.9 8 117

KVM from Linux 4.14 6 218

Linux 4.14 26 670

FreeBSD 11.0 23 708

HotSpot 8 3 53

TCMalloc 2.6.90 3 65

jemalloc 5.0.1 9 86
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XPV versus XenNUMA (fixed NUMA
topology)

By exposing the NUMA topology: up to 130% improvement

XenNUMA [ B Interleaved BN XPV without NUMA SRL
. L1 PFT B XPV with NUMA SRL
policies
ANB
3.5
£ 3 -
3]
_C:; 2.5 ~
82 i
= 1.5 -
E 1 _
z 0.5 =
0 —
o = w2 o o) — [—
= & = z & 3 2 2, z
o, (U8} o = = = = o
S % e Z
N L: —_—
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XPV facing topology changes

- Xen migrates vCPUs to balance the load
- Three identical VMs
- 48 vCPUs/42 pCPUs

I Interleaved
JOFT
ANB
vNUMA
— 3| |HnOS only XPV
3 faxpv
-
g 2
9 JBB2005 milc swim

. Improvement: up to 127%
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To take away

NUMA can have a large impact on performance
On many parallel applications (both native and Java)

- We can already significantly improve performances with
generic NUMA policies

« We can predict which generic policy can give the best
performance

For some applications/SLRs, we need specific policies
- JVM, Databases, locks, NUMA-aware allocators...

- We can mitigate NUMA effects even in hypervisors

: "o‘%
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