
CSC4508 – Operating Systems

François Trahay
Gaël Thomas

2025



2



Contents

1 Presentation of the class 1
1.1 Presentation of the class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Kernel sessions: XV6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Evaluation of the class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Threads 3
2.1 Execution context of a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Sharing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Concurrent programming 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Inter-process synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Intra-process synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Classic synchronization patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Synchronization 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Atomic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Synchronization primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Using synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 System calls 47
5.1 Operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Stack frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Interrupts and communication 61
6.1 Communication buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



ii CONTENTS

7 Virtual memory 69
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 User point of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Memory allocation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Architecture 83
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Sequential processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Instruction pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5 Memory hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9 Input/Output 99
9.1 Reminder on files: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Buffered / non-buffered IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3 I/O primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.4 I/O and concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.5 Improving the I / O performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10 File systems 111
10.1 Device and device driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 The I / O cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3 The log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.4 Partitions and file systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.5 UFS/xv6 file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.6 xv6 I/O stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.7 What you must remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11 Bibliography 125



Chapter 1

Presentation of the class

1.1 Presentation of the class
• Objectives of the class:

– Understand the internals of operating systems
– Know how to interact with the OS from a program

• Structure of the class:
– [U] userland oriented sessions
– [K] kernel oriented sessions
– [G] more general sessions

1.2 Organization
• Processes

– CI1 [U] Threads
– CI2 [U] Concurrent programming
– CI3 [G] Synchronization
– CI4 [K] System calls
– CI5 [K] Interruption and scheduling
– CI6 [K] Sprint: finalization of the scheduler

• Memory
– CI7 [U] Virtual memory
– CI8 [K] Memory Management Unit
– CI9 [G] Architecture
– CI10 [K] Sprint

• Input/Output
– CI11 [U] Input/Output
– CI12 [U] Synthesis: mini-project

1



2 CHAPTER 1. PRESENTATION OF THE CLASS

– CI13 [K] File systems
– CI14 [K] Sprint

• [CI15] Exam (lab)

1.3 Kernel sessions: XV6
During the [K]sessions, you will develop an OS

• Based on the xv6 OS

• On the computer architecture RISC-V

• Development of new OS mechanisms

• sprint sessions:

– finalization of development
– evaluation by teachers

1.4 Evaluation
• 20% - Continuous assessment during sprints:

– how did you implement this mechanism of the OS?
– what happens if X?

• 80% - graded lab exam with several parts :
– course question(s)
– explain how you implemented an OS mechanism
– develop an application

1.5 Evaluation of the class
• At the end of the class, students evaluate the class.
• Objective: improve the class



Chapter 2

Threads

2.1 Execution context of a process

• Context: execution context + kernel context
• Address space: code, data and stack

2.1.1 Duplicating a process

• Fork creates a new process and duplicates
– Context: execution context + kernel context
– except for the a0 register (where the return value is stored)

∗ On x86_64 architecture, this is the register rax
– Address space: code, data and stack

3



4 CHAPTER 2. THREADS

2.1.2 Execution flows
• Execution flow ! = Resources

– Execution flow (or thread) : execution context + stack
– Resources: code, data, kernel context

2.1.3 Multithreaded process
• Several execution flows
• Shared resources

In a multi-threaded process, each thread has a context (registers + stack). The rest of the memory
(code, data, etc.) and resources (open files, etc.) are shared between threads.



2.2. SHARING DATA 5

The stacks of the different threads are located in memory so that they can grow. However, if a
thread’s stack grows too much, it might overflow onto the stack of another thread. To avoid this
problem, the size of the stack is limited (the command ulimit -s gives the maximum stack size).
This size limit can be changed using command line (by example ulimit -s 32768), or from a
program (in using the setrlimit function).

2.1.4 Creating a Pthread
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

• attr (in): attributes of the thread to be created
• start_routine (in): function to be executed once the thread is created
• arg (in): parameter to pass to the function
• thread (out): identifier of the created thread

We present here the Pthread API (POSIX thread) which is the most used in C. The C11 standard
defines another interface for manipulating threads. However, there are only few implementations of
this interface. The de facto standard therefore remains Pthread.

Unlike the creation of processes which generates a hierarchy (ie. each process has a parent process),
there is no hierarchy between threads.

2.1.5 Other Pthread functions
int pthread_exit(void* retval);

• Terminates the current thread with the return value retval

int pthread_join(pthread_t tid, void **retval);

• Wait for the tid thread to terminate and get its return value

2.2 Sharing data
• The memory space is shared between the threads, in particular

– global variables
– static local variables
– the kernel context (file descriptors, streams, signals, etc.)

• Some other resources are not shared
– local variables
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Technically, all the memory space is shared between the threads. It is therefore possible to share all
the variables, including local variables.

2.2.1 Thread-safe source code
• thread-safe source code: gives a correct result when executed simultaneously by multiple

threads:
– No call to non thread-safe code
– Protect access to shared data

2.2.2 Reentrant source code
• Reentrant source code: code whose result does not depend on a previous state

– Do not maintain a persistent state between calls
– example of a non-reentrant function: fread depends on the position of the stream cursor

2.2.3 Example: strtok

Another example of a non-reentrant function is the char *strtok(char * str, char * delim)
function. This function extracts substrings from a string.

For example, the following code displays the different directories of the PATH variable:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void extract_path() {
char* string = getenv("PATH");
printf("Parsing '%s'\n", string);

for(char* token = strtok(string, ":") ;
token ;
token = strtok(NULL, ":") ){

printf("\t %s\n", token);
}

}

int main(int argc, char**argv) {
extract_path();
return 0;

}

Here is an example of result obtained with this program:
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Parsing '/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games'
/usr/local/bin
/usr/bin
/bin
/usr/local/games
/usr/games

The strtok function is not reentrant because it is based on a previous state (a pointer to the last
character tested in the string). Thus, in this example, the processing applied to each token cannot
use strtok. For example:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void extract_path() {
char* string = getenv("PATH");
printf("Parsing '%s'\n", string);
// string should contain a list of directories separated with :
// eg. /usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

// Extract the directories
// eg. /usr/local/bin, /usr/bin, /bin, /usr/local/games, /usr/games
for(char* token = strtok(string, ":") ;

token ;
token = strtok(NULL, ":") ){

// token contains a directory (eg. /usr/local/bin)
printf("\t %s contains: ", token);

// Extract the subdirectories
// eg. usr, local, bin
for(char* word = strtok(token, "/ ") ;

word ;
word = strtok(NULL, "/") ){

printf("%s ", word);
}
printf("\n");

}
}

int main(int argc, char**argv) {
extract_path();
return 0;

}

Will result in:

Parsing '/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games'
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/usr/local/bin contains: usr local bin

Here the first token (/usr/local/bin) is split into words (usr, local, bin) by successive calls to
strtok which modify the previous state of strtok, which prevents subsequent calls to token =
strtok (NULL, ":") to iterate over the string string.

2.2.4 Making a function reentrant
It is possible to make a non-reentrant function reentrant by adding a parameter corresponding to
the state of the function. For example, the reentrant version of char* strtok(char *str, const
char *delim); is char* strtok_r(char *str, const char *delim, char **saveptr );

Thus, the previous program can be corrected:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void extract_path() {
char* string = getenv("PATH");
char* saveptr = NULL;
printf("Parsing '%s'\n", string);

for(char* token = strtok_r(string, ":", &saveptr) ;
token ;
token = strtok_r(NULL, ":", &saveptr) ){

printf("\t %s contains: ", token);

char* saveptr_word = NULL;
for(char* word = strtok_r(token, "/ ", &saveptr_word) ;

word ;
word = strtok_r(NULL, "/", &saveptr_word) ){

printf("%s ", word);
}
printf("\n");

}
}

int main(int argc, char**argv) {
extract_path();
return 0;

}

Which will result in:

Parsing '/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games'



2.3. SYNCHRONIZATION 9

/usr/local/bin contains: usr local bin
/usr/bin contains: usr bin
/bin contains: bin
/usr/local/games contains: usr local games
/usr/games contains: usr games

2.2.5 TLS – Thread-Local Storage
• Global variable (or static local) specific to each thread

– Example: errno
– Declaring a TLS variable

∗ in C11: _Thread_local int variable = 0;

2.2.6 TLS variables in C99
• Before the C11 standard, using thread-local storage was supported by some compilers using

compiler-dependant keywords:

– in C99 with gcc: __thread int variable = 0;
– in C99 with Visual studio: __declspec(thread) int variable = 0;

2.2.7 pthread_key

• Another way (more portable, but much more painful to write) to declare a TLS variable is to
use a pthread_key:

– creation:
∗ int pthread_key_create(pthread_key_t *key, void (*destructor)(void*));

– terminaison:
∗ int pthread_key_delete(pthread_key_t *key););

– usage:
∗ void *pthread_getspecific(pthread_key_t key);
∗ int pthread_setspecific(pthread_key_t key, const void *value);

– initialisation:
∗ int pthread_once(pthread_once_t *once_control, void (*init_routine)

(void));

2.3 Synchronization
• Guarantee data consistency

– Simultaneous access to a shared read / write variable
∗ x++ is not atomic (consisting of load, update, store)

– Simultaneous access to a set of shared variables
∗ example: a function swap(a, b){ tmp=a; a=b; b=tmp; }
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• Several synchronization mechanisms exist
– Mutex
– Atomic Instructions
– Conditions, semaphores, etc. (see Lecture #3)

The following program illustrates the problem of simultaneous access to shared variables. Here, two
threads each increment 1 000 000 000 times the same variable:

/*
* compteurBOOM.c
*
* Synchronization problem
*
*
*/

#include <error.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>

/* INT_MAX / 2 */
#define NBITER 1000000000

int counter = 0;

void *start_routine(void *arg) {
int i;

for (i = 0; i < NBITER; i++) {
/* OOPS: WRONG ! Access to an unprotected shared variable */
counter ++;

}
pthread_exit(NULL);

}

int main (int argc, char *argv[]) {
int rc;
pthread_t thread1, thread2;

rc = pthread_create(&thread1, NULL, start_routine, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_create(&thread2, NULL, start_routine, NULL);
if (rc)
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error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_join(thread1, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");
rc = pthread_join(thread2, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");

if (counter != 2 * NBITER)
printf("BOOM! counter = %d\n", counter);

else
printf("OK counter = %d\n", counter);

exit(EXIT_SUCCESS);
}

While the counter should be 2 * 1 000 000 000 = 2 000 000 000, running this program gives
another result, for example:

$ ./compteurBOOM
BOOM! compteur = 1076588402

2.3.1 Mutex
• Type: pthread_mutex_t

• Initialisation:

– pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
– int pthread_mutex_init(ptread_mutex_t *m, const pthread_mutexattr_t

*attr);

• Usage:

– int pthread_mutex_lock(pthread_mutex_t *mutex));
– int pthread_mutex_trylock(pthread_mutex_t *mutex);
– int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Terminaison:

– int pthread_mutex_destroy(pthread_mutex_t *mutex);

Using a mutex, we can correct the BOOM counter program by ensuring that the counter increments
are done in mutual exclusion:

/*
* compteurBOOM.c
*
* Synchronization problem
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*
*
*/

#include <error.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>

/* INT_MAX / 2 */
#define NBITER 1000000000

int counter = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void *start_routine(void *arg) {
int i;

for (i = 0; i < NBITER; i++) {
pthread_mutex_lock(&mutex);
counter ++;
pthread_mutex_unlock(&mutex);

}
pthread_exit(NULL);

}

int main (int argc, char *argv[]) {
int rc;
pthread_t thread1, thread2;

rc = pthread_create(&thread1, NULL, start_routine, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_create(&thread2, NULL, start_routine, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_join(thread1, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");
rc = pthread_join(thread2, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");
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if (counter != 2 * NBITER)
printf("BOOM! counter = %d\n", counter);

else
printf("OK counter = %d\n", counter);

exit(EXIT_SUCCESS);
}

While the result is correct, the use of a mutex significantly slows down the program (144s with
mutex, against 4.1s without mutex).

2.3.2 Atomic operations
• Operation executed atomically

• C11 defines a set of functions that perform atomic operations

– C atomic_fetch_add(volatile A *object, M operand);
– _Bool atomic_flag_test_and_set(volatile atomic_flag *object);

• C11 defines atomic types

– operations on these types are atomic
– declaration: _Atomic int var; or _Atomic(int) var;

We can fix the counterBOOM program by using atomic operations. To do this, all we have to do
is declare the counter like _Atomic int. The counter increment then uses the atomic operation
atomic_fetch_add.

/*
* compteurBOOM.c
*
* Synchronization problem
*
*
*/

#include <error.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>

/* INT_MAX / 2 */
#define NBITER 1000000000

_Atomic int counter = 0;
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void *start_routine(void *arg) {
int i;

for (i = 0; i < NBITER; i++) {
counter ++;

}
pthread_exit(NULL);

}

int main (int argc, char *argv[]) {
int rc;
pthread_t thread1, thread2;

rc = pthread_create(&thread1, NULL, start_routine, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_create(&thread2, NULL, start_routine, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_join(thread1, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");
rc = pthread_join(thread2, NULL);
if (rc)

error(EXIT_FAILURE, rc, "pthread_join");

if (counter != 2 * NBITER)
printf("BOOM! counter = %d\n", counter);

else
printf("OK counter = %d\n", counter);

exit(EXIT_SUCCESS);
}

Here, the result is correct and the program is much faster than when using a mutex:

• without synchronization: 4.1s
• with a mutex: 144s
• with an atomic operation: 35s
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Concurrent programming

3.1 Introduction
• Content of this lecture

– discovering existing synchronization mechanisms
∗ inter-process synchronization
∗ intra-process synchronization

– studying classic synchronization patterns

3.2 Inter-process synchronization
• IPC: Inter Process Communication

– based on IPC objects in the OS
– usage: usually via an entry in the filesystem
– provides data persistence

3.2.1 Pipes
• Special files managed in FIFO

– Anonymous pipes
∗ int pipe(int pipefd[2]);

· creates a pipe accessible by the current process
· also accessible to future child processes
· pipefd[0] for reading, pipefd[1] for writing

– Named pipes
∗ int mkfifo(const char *pathname, mode_t mode);
∗ creates an entry in the filesystem accessible by any process

15
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– Use (almost) like a “regular” file
∗ blocking reading
∗ lseek is impossible

You have already handled pipes without necessarily realizing it: in bash, the sequence of commands
linked by pipes is done via anonymous pipes created by the bash process.

So when we run cmd1 | cmd2 | cmd3, bash creates 2 anonymous pipes and 3 processes, then
redirects (thanks to the dup2 system call, see Lecture #11) standard input and output of processes
to the different tubes.

3.2.2 Shared memory
• Allows you to share certain memory pages between several processes

– Creating a zero-byte shared memory segment:
∗ int shm_open(const char *name, int oflag, mode_t mode);
∗ name is a key of the form /key

– Changing the segment size:
∗ int ftruncate(int fd, off_t length);

– Mapping the segment into memory:
∗ void *mmap(void *addr, size_t length, int prot, int flags, int fd,

off_t offset);
∗ flags must contain MAP_SHARED

We will see later (during lecture 11 on I/O) another use of mmap.

3.2.3 Semaphore
• Object consisting of a value and a waiting queue
• Creating a semaphore:

– named semaphore: sem_t *sem_open(const char *name, int oflag, mode_t
mode, unsigned int value);

∗ name is a key of the form /key
– anonymous semaphore: int sem_init(sem_t *sem, int pshared, unsigned int

value);
∗ if pshared != 0, ca be used by several processes (using a shared memory segment)

• Usage:
– int sem_wait(sem_t *sem);
– int sem_trywait(sem_t *sem);
– int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
– int sem_post(sem_t *sem);
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3.3 Intra-process synchronization
• Based on shared objects in memory
• Possible use of IPC

3.3.1 Mutex
• Ensures mutual exclusion
• Type: pthread_mutex_t
• Initialisation:

– pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
– int pthread_mutex_init(ptread_mutex_t *m, const pthread_mutexattr_t

*attr);
• Usage:

– int pthread_mutex_lock(pthread_mutex_t *mutex));
– int pthread_mutex_trylock(pthread_mutex_t *mutex);
– int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Destroying a mutex:
– int pthread_mutex_destroy(pthread_mutex_t *mutex);

3.3.2 Inter-process mutex
It is possible to synchronize threads from several processes with a pthread_mutex_t if it is in a
shared memory area. For this, it is necessary to position the PTHREAD_PROCESS_SHARED attribute of
the mutex with the function int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

3.3.3 Monitors
• Allows you to wait for a condition to occur
• Consists of a mutex and a condition
• Example:

pthread_mutex_lock(&l);
while(!condition) {

pthread_cond_wait(&c, &l);
}
process_data();

pthread_mutex_unlock(&l);

pthread_mutex_lock(&l);
produce_data();
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pthread_cond_signal(&c);
pthread_mutex_unlock(&l);

Here are the prototypes of the functions associated with the conditions:

• int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
• int pthread_cond_destroy(pthread_cond_t *cond);
• pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
• int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

– waits for a condition to occur.
• int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

const struct timespec *abstime);
• int pthread_cond_signal(pthread_cond_t *cond);

– unblocks a thread waiting for the condition
• int pthread_cond_broadcast(pthread_cond_t *cond);

– unblocks all threads waiting for the condition

The mutex ensures that between testing for the condition ( while (! condition)) and wait
(pthread_cond_wait()), no thread performs the condition.

3.3.4 Inter-process monitors
To synchronize multiple processes with a monitor, it is necessary to set the following attributes:

• The attribute PTHREAD_MUTEX_SHARED of the mutex
– int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)

• The attribute PTHREAD_PROCESS_SHARED of the condition
– int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)

3.3.5 Barrier
• Allows you to wait for a set of threads to reach rendez-vous point

– Initialisation:
– int pthread_barrier_init(pthread_barrier_t *barrier, const pthread_barrierattr_t

*restrict attr, unsigned count);
• Waiting:

– int pthread_barrier_wait(pthread_barrier_t *barrier);
∗ block until count threads reach pthread_barrier_wait
∗ unblock all count threads

Once all the threads have reached the barrier, they are all unblocked and pthread_barrier_wait
returns 0 except for one thread which returns PTHREAD_BARRIER_SERIAL_THREAD.
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3.3.6 Inter-process barrier
To synchronize threads from multiple processes with a barrier, it is necessary to set the attribute
PTHREAD_PROCESS_SHARED with int pthread_barrierattr_setpshared(pthread_barrierattr_t
*attr, int pshared);

3.3.6.1 Read-Write lock

• Type: pthread_rwlock_t
• int pthread_rwlock_rdlock(pthread_rwlock_t* lock)

– Lock in read-mode
– Possibility of several concurrent readers

• int pthread_rwlock_wrlock(pthread_rwlock_t* lock)
– Lock in write-mode
– Mutual exclusion with other writers and readers

• int pthread_rwlock_unlock(pthread_rwlock_t* lock)
– Release the lock

3.4 Classic synchronization patterns
• Goals

– Being able to identify classic patterns
– Implement these patterns with proven methods

In the literature, these problems are usually solved by using semaphores. This is because these
problems have been theorized in the 1960s and 1970s by Dijkstra based on semaphores. In addition,
semaphores have the advantage of being able to be used for inter-process synchronizations or
intra-process.

However, modern operating systems implement many synchronization primitives which are much
more efficient than semaphores. In the next slides, we will therefore rely on these mechanisms rather
than semaphores.

3.4.1 Mutual exclusion synchronization pattern
• Allows concurrent access to a shared resource
• Principle:

– Mutex m initialized
– Primitive mutex_lock(m) at the start of the critical section
– Primitive mutex_unlock(m) at the end of the critical section
– Example:

∗ mutex m initialized
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Prog1
mutex_lock(m)
x=read (account)
x = x + 10
write (account=x)

mutex_unlock(m)

Prog2
mutex_lock(m)
x=read (account)
x = x - 100
write(account=x)

mutex_unlock(m)

3.4.2 Intra-process implementation
In a multi-threaded process, we just need to use a mutex of type pthread_mutex_t.

3.4.3 Inter-process implementation
To implement a mutual exclusion between several processes, several solutions exist

• using a pthread_mutex_t in a shared memory segment between processes. For
this, it is necessary to set the attribute PTHREAD_MUTEX_SHARED in the mutex (using
pthread_mutexattr_setpshared);

• using a semaphore initialized to 1. The entry in section critical is protected by sem_wait, and
we call sem_post when leaving the critical section.

3.4.4 Cohort synchronization pattern
• Allows the cooperation of a group of a given maximum size
• Principle:

– A counter initialized to N, and a monitor m to protect the counter
– Decrement the counter at the start when needing a resource
– Increment the counter at the end when releasing the resource
Prog Vehicule

...
mutex_lock(m);
while(cpt == 0){ cond_wait(m); }
cpt--;
mutex_unlock(m);
|...
mutex_lock(m);
cpt++;
cond_signal(m);
mutex_unlock(m);
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3.4.5 Producer / Consumer synchronization pattern
• One or more threads produce data
• One or more threads consume the data produced
• Communication via a N blocks buffer

– Executing Produc: produces info0

• Executing Produc: produces info1

• Executing Conso: consumes info0

• Executing Produc: produces info2

3.4.5.1 Implementation of a Producer / Consumer pattern

• A available_spots monitor initialized to N
• A ready_info monitor initialized to 0

Producer: Consumer:
repeat repeat
... ...

mutex_lock(available_spots); mutex_lock(ready_info);
while(available_spots<=0) while(ready_info<=0)

cond_wait(available_spots); cond_wait(ready_info);
reserve_slot(); extract(info)

mutex_unlock(available_spots); mutex_unlock(ready_info);

calcul(info) mutex_lock(available_spots);
free_slot();

mutex_lock(ready_info); cond_signal(available_spots)
push(info); mutex_unlock(available_spots);
cond_signal(ready_info);

mutex_unlock(ready_info); ...
... endRepeat
endRepeat



22 CHAPTER 3. CONCURRENT PROGRAMMING

3.4.5.2 Inter-process Producer / Consumer

It is of course possible to implement a producer / consumer scheme between processes using
conditions and mutexes. Another simpler solution is to use a pipe: since writing in a pipe being
atomic, the deposit of a data boils down to writing into the pipe, and reading from the pipe extracts
the data.

3.4.6 Reader / Writer pattern
• Allow a coherent competition between two types of process:

– the “readers” can simultaneously access the resource
– the “writers” access the resource in mutual exclusion with other readers and writers

3.4.6.1 Implementation of a Reader / Writer synchronization pattern

Use a pthread_rwlock_t

• int pthread_rwlock_rdlock(pthread_rwlock_t* lock) to protect read operations
• int pthread_rwlock_wrlock(pthread_rwlock_t* lock) to protect write operations
• int pthread_rwlock_unlock(pthread_rwlock_t* lock) to release the lock

3.4.6.2 Implementation with a mutex

It is possible to implement the reader / writer synchronization pattern using a mutex instead of
rwlock: read and write operations are protected by a mutex. However, this implementation does
not not allow multiple readers to work in parallel.

3.4.6.3 Implementation with a monitor

The implementation of the monitor-based reader / writer is more complex. It mainly requires: - an
integer readers which counts the number of threads reading - a boolean writing which indicates
that a thread is writing - a cond condition to notify changes to these variables - a mutex mutex to
protect concurrent access

Here is an implementation of the reader / writer using a monitor:

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>

// This program simulates operations on a set of bank accounts
// Two kinds of operations are available:
// - read operation: compute the global balance (ie. the sum of all accounts)
// - write operation: transfer money from one account to another
//
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// Here's an example of the program output:
//
// $ ./rw_threads_condition
// Balance: 0 (expected: 0)
// 3982358 operation, including:
// 3581969 read operations (89.945932 % )
// 400389 write operations (10.054068 % )

#define N 200
int n_loops = 1000000;
int accounts[N];

int nb_read = 0;
int nb_write = 0;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int readers=0;
int writing=0;

/* read all the accounts */
int read_accounts() {

pthread_mutex_lock(&mutex);
while(writing)

pthread_cond_wait(&cond, &mutex);
readers++;
pthread_mutex_unlock(&mutex);

nb_read++;
int sum = 0;
for(int i=0; i<N; i++) {

sum += accounts[i];
}

pthread_mutex_lock(&mutex);
readers--;
if(!readers) {

pthread_cond_signal(&cond);
}
pthread_mutex_unlock(&mutex);
return sum;

}

/* transfer amount units from account src to account dest */
void transfer(int src, int dest, int amount) {
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pthread_mutex_lock(&mutex);
while(writing || readers)

pthread_cond_wait(&cond, &mutex);
writing = 1;
pthread_mutex_unlock(&mutex);

nb_write++;
accounts[dest] += amount;
accounts[src] -= amount;

pthread_mutex_lock(&mutex);
writing=0;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);

}

void* thread_function(void*arg) {
for(int i=0; i<n_loops; i++) {

/* randomly perform an operation
* threshold sets the proportion of read operation.
* here, 90% of all the operations are read operation
* and 10% are write operations
*/

int threshold = 90;
int x = rand()%100;
if(x < threshold) {

/* read */
int balance = read_accounts();
if(balance != 0) {

fprintf(stderr, "Error : balance = %d !\n", balance);
abort();

}
} else {

/* write */
int src = rand()%N;
int dest = rand()%N;
int amount = rand()%100;
transfer(src, dest, amount);

}
}
return NULL;

}

int main(int argc, char**argv) {
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for(int i = 0; i<N; i++) {
accounts[i] = 0;

}

int nthreads=4;
pthread_t tid[nthreads];

for(int i=0; i<nthreads; i++) {
pthread_create(&tid[i], NULL, thread_function, NULL);

}

for(int i=0; i<nthreads; i++) {
pthread_join(tid[i], NULL);

}

int balance = read_accounts();
printf("Balance: %d (expected: 0)\n", balance);

int nb_op = nb_read+nb_write;
printf("%d operation, including:\n",nb_op);
printf("\t%d read operations (%f %% )\n", nb_read, 100.*nb_read/nb_op);
printf("\t%d write operations (%f %% )\n", nb_write, 100.*nb_write/nb_op);

return EXIT_SUCCESS;
}
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Chapter 4

Synchronization

4.1 Introduction
• Objectives of this lecture:

– How are synchronization primitives implemented?
– How to do without locks?

If you want to study further synchronization primitives, and to understand memory models, the
blog post We Make a std::shared_mutex 10 Times Faster <https://www.codeproject.com/Articles
/1183423/We-Make-a-std-shared-mutex-10-Times-Faster> discusses in details atomic operations,
instruction reordering, C++ memory model and various synchronization primitives.

4.2 Atomic operations
4.2.1 Motivation

• By default, an instruction modifying a variable is non-atomic

• example : x++ gives :

– register = load(x)
– register ++
– x = store (register)

→ Problem if the variable is modified by a other thread simultaneously

4.2.2 Can’t we just use volatile ?
• Tells the compiler that the variable can change from one access to another:

27

https://www.codeproject.com/Articles/1183423/We-Make-a-std-shared-mutex-10-Times-Faster
https://www.codeproject.com/Articles/1183423/We-Make-a-std-shared-mutex-10-Times-Faster
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– modification by another thread
– modification by a signal handler

• But volatile does not ensure atomicity

Here is an example of a program that may suffer from overly aggressive optimization by the compiler:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#if USE_VOLATILE
volatile int a = 0;
#else
int a = 0;
#endif

void* thread1(void*arg) {
while(a == 0) ;
printf("Hello\n");
return NULL;

}

void* thread2(void*arg) {
a = 1;
return NULL;

}

int main(int argc, char**argv) {
pthread_t t1, t2;
pthread_create(&t1, NULL, thread1, NULL);
pthread_create(&t2, NULL, thread2, NULL);

pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

}

When compiled with the optimization level -O0 (i.e. without any optimization), thread1 spins
waiting, and when thread2 modifies the variable a, it unlocks thread1 which displays Hello:

$ gcc -o volatile volatile.c -Wall -pthread -O0
$ ./volatile
Hello
$

When compiled with the optimization level -O1, the generated code no longer works:

$ gcc -o volatile volatile.c -Wall -pthread -O1



4.2. ATOMIC OPERATIONS 29

$ ./volatile
[waits indefinitely]
^C
$

Analyzing the code generated by the compiler reveals the problem:

$ gcc -o volatile volatile.c -Wall -pthread -O2
$ gdb ./volatile
[...]
(gdb) disassemble thread1
Dump of assembler code for function thread1:

0x0000000000000756 <+0>: auipc a5,0x2
0x000000000000075a <+4>: lw a5,-1778(a5) # 0x2064 <a>
0x000000000000075e <+8>: bnez a5,0x762 <thread1+12>
0x0000000000000760 <+10>: j 0x760 <thread1+10>
0x0000000000000762 <+12>: add sp,sp,-16
0x0000000000000764 <+14>: auipc a0,0x0
0x0000000000000768 <+18>: add a0,a0,36 # 0x788
0x000000000000076c <+22>: sd ra,8(sp)
0x000000000000076e <+24>: jal 0x620 <puts@plt>
0x0000000000000772 <+28>: ld ra,8(sp)
0x0000000000000774 <+30>: li a0,0
0x0000000000000776 <+32>: add sp,sp,16
0x0000000000000778 <+34>: ret

nd of assembler dump.
$

We see here that at the address 0x760, the program jumps to the address 0x760. So it jumps in
place indefinitely.

This is explained by the fact that the variable a is not volatile. The compiler therefore thinks
it can optimize access to this variable: since the thread1 function only accesses the variable in
read-mode, the program loads the variable in a register (here, the a5 register, see the instruction
0x75a), then consults the registry. When thread2 modifies the variable a, the modification is
therefore not perceived by thread1!

Declaring the variable as volatile forces the compiler to read the variable each time:

$ gcc -o volatile volatile.c -Wall -pthread -O2 -DUSE_VOLATILE=1
$ gdb volatile
(gdb) disassemble thread1
Dump of assembler code for function thread1:

0x0000000000000756 <+0>: add sp,sp,-16
0x0000000000000758 <+2>: sd ra,8(sp)
0x000000000000075a <+4>: auipc a4,0x2
0x000000000000075e <+8>: add a4,a4,-1782 # 0x2064 <a>
0x0000000000000762 <+12>: lw a5,0(a4)
0x0000000000000764 <+14>: beqz a5,0x762 <thread1+12>
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0x0000000000000766 <+16>: auipc a0,0x0
0x000000000000076a <+20>: add a0,a0,34 # 0x788
0x000000000000076e <+24>: jal 0x620 <puts@plt>
0x0000000000000772 <+28>: ld ra,8(sp)
0x0000000000000774 <+30>: li a0,0
0x0000000000000776 <+32>: add sp,sp,16
0x0000000000000778 <+34>: ret

End of assembler dump.

Here, the loop while (a == 0) is translated to the lines from 0x762 to 0x764. At each loop
iteration, the value of a is loaded, then tested.

4.2.3 Atomic operations
• C11 provides a set of atomic operations, including

– atomic_flag_test_and_set
– atomic_compare_exchange_strong
– atomic_fetch_add
– atomic_thread_fence

4.2.4 Test and set
_Bool atomic_flag_test_and_set(volatile atomic_flag* obj);

• sets a flag and returns its previous value

Performs atomically:

int atomic_flag_test_and_set(int* flag) {
int old = *flag;
*flag = 1;
return old;

}

Implementing a lock:

void lock(int* lock) {
while(atomic_flag_test_and_set(lock) == 1) ;

}

Here is an example of a program using a test_and_set based lock:

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
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#include <pthread.h>
#include <stdatomic.h>

#define NITER 1000000
#define NTHREADS 4

volatile int lock=0;

int x = 0;
#ifdef NOT_THREAD_SAFE

/* thread-unsafe version */
void do_lock() {

while(lock) ;
lock = 1;

}

void do_unlock() {
lock = 0;

}

#else

/* thread-safe version */
void do_lock() {

while(atomic_flag_test_and_set(&lock)) ;
}

void do_unlock() {
lock = 0;

}

#endif /* NOT_THREAD_SAFE */

void* thread_function(void* arg) {
for(int i=0; i<NITER; i++) {

do_lock();
x++;
do_unlock();

}
return NULL;

}

int main(int argc, char**argv) {
pthread_t tids[NTHREADS];
int ret;
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for(int i = 0; i<NTHREADS; i++) {
ret = pthread_create(&tids[i], NULL, thread_function, NULL);
assert(ret == 0);

}
for(int i = 0; i<NTHREADS; i++) {

ret = pthread_join(tids[i], NULL);
assert(ret == 0);

}

printf("x = %d\n", x);
return EXIT_SUCCESS;

}

4.2.5 Compare And Swap (CAS)
_Bool atomic_compare_exchange_strong(volatile A* obj, C* expected, C desired);

• compares *obj and *expected

• if equal, copy desired into *obj and return true

• else, copy the value of *obj into *expected and return false

• Performs atomically:

bool CAS(int* obj, int* expected, int desired) {
if(*obj != *expected) {

*expected = *obj;
return false;

} else {
*obj = desired;
return true;

}
}

Here is an example of a program handling a lock-free list thanks to compare_and_swap:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdatomic.h>

#define NITER 1000000
#define NTHREADS 4

struct node {
int value;
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struct node* next;
};

struct node *stack = NULL;

#ifdef NOT_THREAD_SAFE

/* thread-unsafe version */
void push(int value) {

struct node* n = malloc(sizeof(struct node));
n->value = value;
n->next = stack;
stack = n;

}

int pop() {
struct node* n = stack;
int value = 0;
if(n) {

value = n->value;
stack = n->next;
free(n);

}
return value;

}

#else

/* thread-safe version */
void push(int value) {

struct node* n = malloc(sizeof(struct node));
n->value = value;
n->next = stack;

int done = 0;
do {

done = atomic_compare_exchange_strong(&stack, &n->next, n);
} while(!done);

}

int pop() {
int value = 0;
struct node* old_head = NULL;
struct node* new_head = NULL;
int done = 0;
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do {
/* Warning: this function still suffers a race condition (search for
* "ABA problem" for more information).
* Fixing this would be too complicated for this simple example.
*/

old_head = stack;
if(old_head)

new_head = old_head->next;
done = atomic_compare_exchange_strong(&stack, &old_head, new_head);

} while (!done);

if(old_head) {
value = old_head->value;
free(old_head);

}
return value;

}

#endif /* NOT_THREAD_SAFE */

_Atomic int sum = 0;
void* thread_function(void* arg) {

for(int i=0; i<NITER; i++) {
push(1);

}

int value;
while((value=pop()) != 0) {

sum+=value;
}

return NULL;
}

int main(int argc, char**argv) {
pthread_t tids[NTHREADS];
for(int i = 0; i<NTHREADS; i++) {

pthread_create(&tids[i], NULL, thread_function, NULL);
}
for(int i = 0; i<NTHREADS; i++) {

pthread_join(tids[i], NULL);
}
printf("sum = %d\n", sum);
return EXIT_SUCCESS;

}
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4.2.6 Fetch and Add
• C atomic_fetch_add( volatile A* obj, M arg );

– replace obj with arg+obj
– return the old value of obj

• Performs atomically:

int fetch_and_add(int* obj, int value) {
int old = *obj;
*obj = old+value;
return old;

}

Here is an example of a program using fetch_and_add to atomically increment a variable:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdatomic.h>

#define NITER 1000000
#define NTHREADS 4

volatile int x = 0;

#ifdef NOT_THREAD_SAFE

/* thread-unsafe version */
void inc(volatile int * obj) {

*obj = (*obj)+1;
}

#else

/* thread-safe version */
void inc(volatile int * obj) {

atomic_fetch_add(obj, 1);
}

#endif /* NOT_THREAD_SAFE */

void* thread_function(void* arg) {
for(int i=0; i<NITER; i++) {

inc(&x);
}
return NULL;
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}

int main(int argc, char**argv) {
pthread_t tids[NTHREADS];
for(int i = 0; i<NTHREADS; i++) {

pthread_create(&tids[i], NULL, thread_function, NULL);
}
for(int i = 0; i<NTHREADS; i++) {

pthread_join(tids[i], NULL);
}

printf("x = %d\n", x);
return EXIT_SUCCESS;

}

4.2.7 Memory Fence (Barrière mémoire)
• C atomic_thread_fence( memory_order order );

– performs a memory synchronization
– ensures that all past memory operations are visible by all threads according to the

memory model chosen (see C11 memory model)

4.3 Synchronization primitives
• Properties to consider when choosing a synchronization primitive

– Reactivity: time spent between the release of a lock and the unblocking of a thread
waiting for this lock

– Contention: memory traffic generated by threads waiting for a lock
– Equity and risk of famine: if several threads are waiting for a lock, do they all have the

same probability of acquire it? Are some threads likely to wait indefinitely?

4.3.1 Busy-waiting synchronization
int pthread_spin_lock(pthread_spinlock_t *lock);

• tests the value of the lock until it becomes free, then acquires the lock

int pthread_spin_unlock(pthread_spinlock_t *lock);

• Benefits

– Simple to implement (with test_and_set)
– Reactivity

https://en.cppreference.com/w/c/atomic/memory_order
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• Disadvantages

– Consumes CPU while waiting
– Consumes memory bandwidth while waiting

It is also possible to implement a spinlock using an atomic operation:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <stdatomic.h>
#include <assert.h>

#define NITER 1000000
#define NTHREADS 4

struct lock {
/* if flag=0, the lock is available
* if flag=1, the lock is taken
*/

volatile int flag;
};
typedef struct lock lock_t;

void lock(lock_t *l) {
/* try to set flag to 1.
* if the flag is already 1, loop and try again
*/

while(atomic_flag_test_and_set(&l->flag)) ;
}

void unlock(lock_t *l) {
l->flag = 0;

}

void lock_init(lock_t *l) {
l->flag = 0;

}

lock_t l;
int x;

void* thread_function(void*arg){
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for(int i=0; i<NITER; i++) {
lock(&l);
x++;
unlock(&l);

}
return NULL;

}

int main(int argc, char**argv) {
lock_init(&l);

pthread_t tids[NTHREADS];
int ret;
for(int i = 0; i<NTHREADS; i++) {

ret = pthread_create(&tids[i], NULL, thread_function, NULL);
assert(ret == 0);

}
for(int i = 0; i<NTHREADS; i++) {

ret = pthread_join(tids[i], NULL);
assert(ret == 0);

}

printf("x = %d\n", x);
printf("expected: %d\n", NTHREADS*NITER);
return EXIT_SUCCESS;

}

4.3.2 Futex

• Fast Userspace Mutex
– System call allowing to build synchronization mechanisms in userland
– Allows waiting without monopolizing the CPU
– A futex is made up of:

∗ a value
∗ a waiting list

– Available operations (among others)
∗ WAIT(int *addr, int value)

· while(*addr == value) { sleep(); }
· add the current thread to the waiting list

∗ WAKE(int *addr, int value, int num)
· *addr = value
· wake up num threads waiting on addr
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4.3.3 Implementing a mutex using a futex
• mutex: an integer with two possible values: 1 (unlocked), or 0 (locked)

• mutex_lock(m):

– Test and unset the mutex
– if mutex is 0, call FUTEX_WAIT

• mutex_unlock(m):

– Test and set the mutex
– call FUTEX_WAKE to wake up a thread from the waiting list

Here is an example of a program implementing a mutex using futex:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <stdatomic.h>
#include <linux/futex.h>
#include <sys/time.h>
#include <sys/syscall.h>
#include <errno.h>
#include <assert.h>

#define NITER 1000000
#define NTHREADS 4

struct lock {
int flag;

};
typedef struct lock lock_t;

static int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout, int *uaddr2, int val3) {

return syscall(SYS_futex, uaddr, futex_op, val,
timeout, uaddr2, val3);

}

void lock(lock_t *l) {
while (1) {

/* Is the futex available? */
int expected = 1;
if (atomic_compare_exchange_strong(&l->flag, &expected, 0))

return; /* Yes */

/* Futex is not available; wait */
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int s = futex(&l->flag, FUTEX_WAIT, 0, NULL, NULL, 0);
if (s == -1 && errno != EAGAIN) {

perror("futex_wait failed");
abort();

}
}

}

void unlock(lock_t *l) {
int expected = 0;
atomic_compare_exchange_strong(&l->flag, &expected, 1);
int s = futex(&l->flag, FUTEX_WAKE, 1, NULL, NULL, 0);
if (s == -1) {

perror("futex_wake failed");
abort();

}
}

void lock_init(lock_t *l) {
l->flag = 1;

}

lock_t l;
int x;

void* thread_function(void*arg){
for(int i=0; i<NITER; i++) {

// printf("%d\n", i);
lock(&l);
x++;
unlock(&l);

}
return NULL;

}

int main(int argc, char**argv) {
lock_init(&l);

pthread_t tids[NTHREADS];
int ret;
for(int i = 0; i<NTHREADS; i++) {

ret = pthread_create(&tids[i], NULL, thread_function, NULL);
assert(ret == 0);

}
for(int i = 0; i<NTHREADS; i++) {
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ret = pthread_join(tids[i], NULL);
assert(ret == 0);

}

printf("x = %d\n", x);
printf("expected: %d\n", NTHREADS*NITER);
return EXIT_SUCCESS;

}

4.3.4 Implementing a monitor using a futex
• condition: a counter

struct cond {
int cpt;

};

void cond_wait(cond_t *c, pthread_mutex_t *m) {
int value = atomic_load(&c->value);
pthread_mutex_unlock(m);
futex(&c->value, FUTEX_WAIT, value);
pthread_mutex_lock(m);

}

void cond_signal(cond_t *c) {
atomic_fetch_add(&c->value, 1);
futex(&c->value, FUTEX_WAKE, 0);

}

Here is an example of a program implementing a condition using futex:

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <linux/futex.h>
#include <stdatomic.h>
#include <assert.h>

#define N 10

int n_loops = 20;

struct cond {
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int cpt;
};
typedef struct cond cond_t;

static int futex(int *uaddr, int futex_op, int val) {
return syscall(SYS_futex, uaddr, futex_op, val, NULL, uaddr, 0);

}

void cond_init(cond_t *c) {
c->cpt = 0;

}

void cond_wait(cond_t *c, pthread_mutex_t *m) {
int cpt = atomic_load(&c->cpt);
pthread_mutex_unlock(m);
futex(&c->cpt, FUTEX_WAIT, cpt);
pthread_mutex_lock(m);

}

void cond_signal(cond_t *c) {
atomic_fetch_add(&c->cpt, 1);
futex(&c->cpt, FUTEX_WAKE, 0);

}

struct monitor{
int value;
pthread_mutex_t mutex;
cond_t cond;

};

int infos[N];
int i_depot, i_extrait;
int nb_produits = 0;
struct monitor places_dispo;
struct monitor info_prete;

void* function_prod(void*arg) {
static _Atomic int nb_threads=0;
int my_rank = nb_threads++;

for(int i=0; i<n_loops; i++) {
int cur_indice;
int product_id;
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usleep(100);
pthread_mutex_lock(&places_dispo.mutex);
while(places_dispo.value == 0) {

cond_wait(&places_dispo.cond, &places_dispo.mutex);
}
places_dispo.value--;
cur_indice = i_depot++;
i_depot = i_depot % N;

product_id = nb_produits++;
pthread_mutex_unlock(&places_dispo.mutex);

usleep(500000);
printf("P%d produit %d dans %d\n", my_rank, product_id, cur_indice);

pthread_mutex_lock(&info_prete.mutex);
infos[cur_indice] = product_id;
info_prete.value ++;
cond_signal(&info_prete.cond);
pthread_mutex_unlock(&info_prete.mutex);

}
return NULL;

}

void* function_cons(void*arg) {
static _Atomic int nb_threads=0;
int my_rank = nb_threads++;

for(int i=0; i<n_loops; i++) {
int cur_indice;
int product_id;
usleep(100);
pthread_mutex_lock(&info_prete.mutex);
while(info_prete.value == 0) {

cond_wait(&info_prete.cond, &info_prete.mutex);
}
info_prete.value--;
product_id = infos[i_extrait];
cur_indice = i_extrait;
i_extrait = (i_extrait+1) % N;
pthread_mutex_unlock(&info_prete.mutex);

usleep(100000);
printf("C%d consomme %d depuis %d\n", my_rank, product_id, cur_indice);
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pthread_mutex_lock(&places_dispo.mutex);
places_dispo.value ++;
cond_signal(&places_dispo.cond);
pthread_mutex_unlock(&places_dispo.mutex);

}
return NULL;

}

void init_monitor(struct monitor *m, int value) {
m->value = value;
pthread_mutex_init(&m->mutex, NULL);
cond_init(&m->cond);

}

int main(int argc, char**argv) {
init_monitor(&places_dispo, N);
init_monitor(&info_prete, 0);
i_depot = 0;
i_extrait = 0;

int nthreads_prod=2;
int nthreads_cons=2;
pthread_t tid_prod[nthreads_prod];
pthread_t tid_cons[nthreads_cons];
int ret;

for(int i=0; i<nthreads_prod; i++) {
ret = pthread_create(&tid_prod[i], NULL, function_prod, NULL);
assert(ret == 0);

}
for(int i=0; i<nthreads_cons; i++) {

ret = pthread_create(&tid_cons[i], NULL, function_cons, NULL);
assert(ret == 0);

}

for(int i=0; i<nthreads_prod; i++) {
ret = pthread_join(tid_prod[i], NULL);
assert(ret == 0);

}
for(int i=0; i<nthreads_cons; i++) {

ret = pthread_join(tid_cons[i], NULL);
assert(ret == 0);

}

return EXIT_SUCCESS;
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}

4.4 Using synchronization
• Classic problems:

– deadlocks
– lock granularity
– scalability

4.4.1 Deadlock
• Situation such that at least two processes are each waiting for a non-shareable resource already

allocated to the other
• Necessary and sufficient conditions (Coffman, 1971 [coffman1971])

1. Resources accessed under mutual exclusion (non-shareable resources)
2. Waiting processes (processes keep resources that are acquired)
3. Non-preemption of resources
4. Circular chain of blocked processes

• Strategies:
– Prevention: acquisition of mutexes in the same order
– Deadlock detection and resolution (eg. with pthread_mutex_timedlock)

4.4.2 Lock granularity
• Coarse grain locking

– A lock protects a large portion of the program
– Advantage: easy to implement
– Disadvantage: reduces parallelism

• Fine grain locking

– Each lock protects a small portion of the program

– Advantage: possibility of using various resources in parallel

– Disadvantages:

∗ Complex to implement without bug (eg. deadlocks, memory corruption)
∗ Overhead (locking comes at a cost)
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4.4.3 Scalability of a parallel system
• Scalability = ability to reduce execution time when adding processing units
• Sequential parts of a program reduce the scalability of a program (Amdhal’s law [amdahl1967])
• In a parallel program, waiting for a lock introduced sequentiality → Locks can interfere with

scalability

The notion of scalability is discussed in more detail in the module CSC5001 High Performance
Systems.

4.5 Bibliography
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Chapter 5

System calls

5.1 Operating systems

• Features
– Offers a unified programming interface to the developer
– Hides hardware implementation details
– Allows you to run multiple processes on a processor

• Composition
– A library called kernel (noyau in French)

∗ Unified programming interface (open, fork, etc.)
∗ Defined by specifications (System V, POSIX, Win32. . . )

– A set of programs allowing to interact with the core
∗ ls, cp, X, gnome, etc.
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5.1.1 Operating systems (2/2)

The operating system is responsible for operating various hardware. It, therefore, includes drivers
capable of interacting with a particular material. The different drivers for the same type of peripheral
offer the same interface, which allows the upper layers of the OS to use the hardware interchangeably.

The transition from user space to kernel space is done via a system call (syscall). The kernel
processes the request for the application and returns a positive or zero integer on success, and -1 on
failure.

From the application point of view, system calls are exposed as functions (defined in libc) in charge
of executing the system call.

5.1.2 Testing the return value of system calls and functions
• You must always test the return value of a system call and deal with errors

• Prevent the propagation of errors (the discovery of the error can take place much later)

• see the fail-fast approach presented in CSC4102

• errno: external variable indicating the cause of the last error

• The ERRORS section in a function manual describes the possible causes of error.

Testimony of a former ASR student: “Without insistence from [the CSC4508 teachers], it would not
have jumped out to us so quickly that the problems (in the robotics championship) came from a
lack of errors handling on a code that had not been carefully proofread”.
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5.1.3 How to check the return value of a function and handle errors?
The macro void assert (scalar expression) tests the expression passed in parameter and, if
false, displays a message error and terminates the program (with the abort () function):

struct stat buf;
int rc = stat(file, &buf);
assert(rc>=0);
// -> in case of an error, prints:
// appli: appli.c:12: main: Assertion `rc>=0' failed.
// Abandon

However, the macro should be used with caution because it is disabled when the program is compiled
in optimized mode (with gcc -O3 for example).

So it is better to test the return code, display a message describing the error, and possibly terminate
the process.

struct stat buf;
int rc = stat(file, &buf);
if(rc < 0) {

fprintf(stderr, "Error\n");
exit(EXIT_FAILURE); // or abort();

}

5.1.4 Displaying the cause of an error
The errno.h file lists standard errors. The manual of each system call (see man 2 function), and
of each function (man 3 function) indicates, in the ERRORS section, the different error codes that
may be returned.

The error message associated with a value of errno can be obtained with strerror () or perror
():

struct stat buf;
int rc = stat(file, &buf);
if(rc < 0) {

fprintf(stderr, "Error while accessing file '%s': %s\n", file, strerror());
// -> message "Error while accessing file 'plop': No such file or directory"
exit(EXIT_FAILURE);

}

or

struct stat buf;
int rc = stat(file, &buf);
if(rc < 0) {

perror("Error while accessing file");
// -> message: "Error while accessing file: No such file or directory"
exit(EXIT_FAILURE);

}
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5.1.5 Generic error handling
It is possible to define a macro displaying an error message and indicating where the error occurred.
For example:

#define FATAL(errnum, ...) do { \
fprintf(stderr, "Error in %s:%d:\n", __FILE__, __LINE__); \
fprintf(stderr, __VA_ARGS__); \
fprintf(stderr, ": %s\n", strerror(errnum)); \
abort(); \

} while(0)

int main(int argc, char**argv) {
char *file = argv[1];
struct stat buf;
int rc = stat(file, &buf);
if(rc < 0) {

FATAL(errno, "Cannot access file '%s'", file);
}
return EXIT_SUCCESS;

}
// affiche:
// Error in fatal.c:21:
// Cannot access file 'plop': No such file or directory
// Abandon

5.1.6 Debugger
When a program calls the abort () function in order to terminate the process, a core dump file
(that describes the process when the error occured) can be generated in order to debug the program
with gdb.

To activate the generation of a core dump, run the command ulimit -c unlimited. Therefore, the
function abort () generates a core dump which can be supplied to gdb:

$ ./fatal plop
Error in fatal.c:21:
Cannot access file 'plop': No such file or directory
Abandon (core dumped)

$ gdb ./fatal core
GNU gdb (Debian 8.1-4+b1) 8.1
[...]
Reading symbols from ./fatal...(no debugging symbols found)...done.
[New LWP 11589]
Core was generated by `./fatal plop'.
Program terminated with signal SIGABRT, Aborted.
#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
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50 ../sysdeps/unix/sysv/linux/raise.c: Aucun fichier ou dossier de ce type.
(gdb) bt
#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
#1 0x00007ffff7dfb535 in __GI_abort () at abort.c:79
#2 0x0000555555555232 in main (argc=2, argv=0x7fffffffdcd8) at fatal.c:21

On Linux distribution running systemd, the core dumps are managed by coredumpctl:

• coredumpctl list prints the list of all the available core dumps
• coredumpctl info display basic information (such as the command line that invoked the

program, or the backtrace of the threads when the crash occured) about the last core dump.
• coredumpctl debug invokes a debugger (eg. gdb) on the last core dump

5.2 Stack frames
• Each function call creates an stack frame
• A stack frame contains

– local variables
– a backup of the modified registers
– the arguments of the function, if there are too many to fit in the registers
– the return address of the function

5.2.1 Content of a stack frame
• A stack frame is defined by

– the address of the top of the stack (the sp register)
– a base address that indicates where the frame begins

∗ on x86, it is kept in the rbp register
∗ on RISC-V, the compiler keeps track of it when generating assembly

• Function entry:
– decrement sp to make space to save registers, and for local variables
– save registers
– save ra

• Function exit:
– restore saved registers
– restore ra
– increment sp back to its previous value
– jump back to ra

5.2.2 Function call convention
Depending on the CPU architecture (and sometimes the compiler), the way of making a function
call may vary.



52 CHAPTER 5. SYSTEM CALLS

5.2.2.1 x86 32 bits

On 32-bit x86 architectures, parameters are placed on the stack so that the first argument is located
at address ebp + 8, the second at address ebp + 12 (if the first argument is stored on 4 bytes), etc.

The return address (i.e. the address of the instruction to run after function) is stored on the stack
at the address ebp+4.

Figure 5.1: Stack frame on 32-bit x86 architectures

5.2.2.2 x86 64 bits

On 64-bit x86 architectures, the parameters are passed via the rdi, rsi, rdx, rcx, r8 and r9
registers. If there are more than 6 parameters, the next parameters are placed on the stack.

5.2.2.3 Arm

On Arm architectures, parameters are passed via registers (x0 to x7 on Arm 64 bits). The return
address is also stored in a register.

5.2.2.4 RISC-V

On RISC-V architectures, parameters are passed via registers (a0 to a7) like Arm. If there are more
parameters, or their values do not fit in 64 bits registers, they are placed on the stack. The return
address is also stored in a register. The address of the previous stack frame is not kept, the compiler
issues an instruction to increment the stack pointer back to the previous stack frame. It means the
preamble and epilogue of compiled functions are slightly more complicated [riasanovsky].
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Figure 5.2: Stack frame on 64-bit x86 architectures

Figure 5.3: Stack frame on 64-bit Arm architectures
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5.2.3 Buffer overflow
• (in French dépassement de tampon)
• Writing data outside the space allocated for a buffer
• Risk of overwriting other data
• Security vulnerability: overwriting data may change the behavior of the application

Here is an example of buffer overflow:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char**argv) {

int N = 4;
char tab[N];
int a = 17;

for(int i=0; i<=N ; i++) {
tab[i] = 'a'+i;

}

printf("tab = {%c, %c, %c, %c}\n", tab[0], tab[1], tab[2], tab[3]);
printf("a = %d\n", a);
return 0;

}

5.2.4 Example
Here, the bug comes from the loop in charge of filling the array which iterates too many times
(because of <=. After the first 4 iterations, here is the memory status:

During the fifth iteration, the modification of tab [4] may modify one byte of the variable a:

The variable a is therefore no longer equal to 17, but 69 (or 0x45).

5.2.5 Security vulnerabilities
Buffer overflow bugs are potentially serious for the security of a system, because depending on
an input (e.g. a string entered by the user), the bug may modify the behavior of the application
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(without necessarily crashing the program). In our example, if the variable a matches the username,
the bug could allow attackers to pretend to be someone else (for example, an administrator)!

Buffer overflows are among the most common security vulnerabilities. To be convinced of this, just
look for the vulnerability announcements that mention “buffer overflow” (around 780 faults in 2017)

5.2.5.1 Stack overflow

• Using a buffer overflow to change the program execution flow
• The return address of a function is on the stack -> possibility of choosing the code to be

executed afterwards

5.2.5.2 Example

Here is an example of stack overflow:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void foo(char* str) {
char new_str[16];
strcpy(new_str, str);
printf("new_str = %s\n", new_str);

}

int main(int argc, char**argv) {

foo(argv[1]);
printf("Back in main()\n");
return 0;

}

Here, the foo function does not check that new_str is large enough to hold str. So if str is too
long, strcpy overflows and may overwrite the return address of foo.

Here is an example of execution leading to an stack overflow:

$ gdb ./stack_overflow
(gdb) r coucouAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: stack_overflow coucouAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
new_str = coucouAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0x000055555555518e in foo (str=0x7fffffffe03e "coucou", 'A' <repeats 83 times>) at stack_overflow.c:9
9 }

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer%20overflow
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(gdb) bt
#0 0x000055555555518e in foo (str=0x7fffffffe03e "coucou", 'A' <repeats 83 times>) at stack_overflow.c:9
#1 0x4141414141414141 in ?? ()
#2 0x4141414141414141 in ?? ()
#3 0x4141414141414141 in ?? ()
#4 0x4141414141414141 in ?? ()
#5 0x4141414141414141 in ?? ()
#6 0x4141414141414141 in ?? ()
#7 0x4141414141414141 in ?? ()
#8 0x4141414141414141 in ?? ()
#9 0x0000555555550041 in ?? ()
#10 0x0000000000000000 in ?? ()
(gdb)

Here, we observe that when exiting the foo function, the program tries to execute the instruction
located at the address 0x4141414141414141 (0x41 is the hexadecimal value of 'A'), which generates
an error.

We could exploit the bug by inserting in argv [1] the address of the function void bar (int a,
int b) as well as its parameters [aleph1996].

5.2.5.3 How to prevent buffer / stack overflow?

• Check the boundaries of buffers
– done automatically in Java
– not done in C / C ++ because it is too expensive

• Do not use the unsafe functions (strcpy, gets . . . )
– Use their safe counterpart instead (strncpy, fgets . . . )

• Non-executable stack (enabled by default by Linux)
– avoid the execution of an arbitrary code

• Stack canaries
– A canary (a specific value) is placed on the stack when entering a function
– If when exiting the function, the canary has been modified, there has been a stack

overflow
– Use the -fstack-protector-all option in gcc

• Address space layout randomization (ASLR) (enabled by default by Linux)
– load the application code to a random address

5.2.6 Hardware privilege levels
The implementation of the two operating modes is dependent on the processor architecture.

5.2.6.1 x86

On x86, there are four privilege levels called protection rings. Today, only two are used:

• the lowest one is the most privileged, this is the ring 0: kernel level
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• the highest one is the least privileged, this is the ring 3: applications level

Two intermediate ones were used in a model where device drivers would run separately from the
kernel.

Figure 5.4: Privilege levels for x86. (c) Hertzsprung at English Wikipedia.

5.2.6.2 RISC-V

Depending on the implemented platform, RISC-V uses up to three levels (sometimes called privilege
modes).

From most privileged to less privileged:

• Machine mode (M): the level at which the firmware runs
• Supervisor mode (S) : the kernel level
• User mode (U) : the level for normal user applications

5.2.7 User/system interface
• The kernel must protect itself from processes

– To avoid bugs
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– To avoid attacks
• For this, the processor offers two operating modes

– The system mode: access to all the memory and to all the processor instructions
– The user mode: access only to the process memory and to a restricted set of instructions

∗ In particular, no direct access to peripherals and instructions that manage the
permissions associated with the memory

5.2.8 User/system interface

• Problem: how do you call a kernel function when you can’t access its memory?

5.2.9 User/system interface

• Solution: special processor instruction to call into system mode
– The kernel associates the address of a syscall function to handle ecall
– To call a kernel function

1. The process gives the function number to call via a parameter
2. The process executes the ecall instruction
3. The processor changes mode and executes the ecall handler
4. the handler uses the parameter to select the kernel function to be executed
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Depending on the type of processor, the way of making a system call may vary. The way to pass
the parameters is a convention which can vary from one OS to another. For example, for Linux:

5.2.10 x86_32

• The parameters of the system call are stored in the ebx ecx, edx, esi, edi, and ebp registers;
• The syscall number is loaded into the eax register;
• Switching to kernel mode is done by generating the interrupt 128: INT 0x80;
• At the end of the system call, the return value is stored in the eax register.

5.2.11 x86_64

• The parameters of the system call are stored in the rdi, rsi, rdx, rcx, r8, and r9 registers;
• The system call number is loaded into the rax register;
• Switching to kernel mode is done with the syscall instruction ;
• The return value of the system call is stored in the rax register.

5.2.12 ARM 64 bits
• The parameters of the system call are stored in the x0 to x5 registers;
• The system call number is loaded in the x8 register;
• Switching to kernel mode is done with the svc 0 instruction;
• The return value of the system call is stored in the x0 register.

5.2.13 RISC-V

• The parameters of the system call are stored in the a0 to a5 registers;

• The system call number is loaded in the a7 register;

• Switching to kernel mode is done with the ecall instructions

– ecall is the generic instruction for a privilege level to call into the immediately-lower
privilege level, i.e., from U to S and from S to M;

• The return value of the system call is stored in the a0 register.
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Chapter 6

Interrupts and communication

6.1 Communication buses

6.1.1 Communication buses
• Hardware components communicate via buses

• From a software point of view, 3 main buses
– Memory bus: mainly to access memory
– Input / output bus: messages from CPUs to devices
– Interrupt bus: messages from peripherals to CPUs

• From the hardware point of view: a set of hardware buses with different protocols that can
multiplex the software buses

6.1.2 The memory bus
• Processors use the memory bus for reads / writes

– Sender: the processor or a peripheral
– Receiver: most often memory, but can also be a device (memory-mapped IO)

61
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6.1.2.1 DMA: Direct Memory Access

• Devices use the memory bus for reads/writes

– Sender: a processor or a peripheral
– Receiver: most often memory, but can also be a device (memory-mapped IO)

• The DMA controller manages the transfer between peripherals or memory

– The processor configures the DMA controller
– The DMA controller performs the transfer
– When finished, the DMA controller generates an interrupt

→ The processor can execute instructions during an I/O

6.1.2.2 MMIO: Memory-Mapped IO

• Processors use memory bus to access devices

– Sender: a processor or a peripheral
– Receiver: most often memory, but can also be a device (memory-mapped IO)

• Device memory is mapped in memory

– When the processor accesses this memory area, the data is transferred from / to the
device
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6.1.3 The input / output bus
• Request / response protocol, special instructions in/out

– Sender: a processor
– Receiver: a peripheral
– Examples: activate the caps-lock LED, start a DMA transfer, read the key pressed on a

keyboard . . .

6.1.4 The interrupt bus - principle
• Used to signal an event to a processor

– Sender: a peripheral or a processor
– Receiver: a processor
– Examples: keyboard key pressed, end of a DMA transfer, millisecond elapsed . . .
– IRQ (Interrupt ReQuest): interrupt number. Identifies the sending device
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6.2 Interrupts
6.2.1 Receiving an interrupt: simple routing

• Devices are wired to a Platform-Level Interrupt Controller (PLIC)
– IRQ: input wire number of a device on the PLIC
– The configuration of the PLIC is done by MMIO
– The PLIC is wired to every processor to actually interrupt them

• The OS configures interrupts for each processor and each privilege mode
– IRQ routing is achieved by selecting which processors receive which interrupts
– There are also priorities of interrupts

• The OS sets its interrupt handler by writing its address in register stvec
– An interrupt handler (a function) usually checks the interrupt type (e.g., device, timer,

etc.), and then delegates handling to other functions
– Depending on the context (typically, user or system mode), the OS swaps handler

6.2.2 Receiving an interrupt: example
1. A block device on IRQ line 0X14 signals a data block is available
2. The PLIC reads the configured priority of IRQ 0x14: 0x2
3. The PLIC signals all processors with priority threshold < 0x2
4. All signaled processors compete to serve the interrupt

• The first processor that gets to serve the interrupt (i.e., execute its interrupt handler)
writes to the PLIC to indicate the interrupt is served

• Other signaled processors check that the interrupt is not already served, and resume
normal operation otherwise

6.2.3 Interrupt routing in NUMA architectures
In Non Uniform Memory Access architectures (NUMA), a device is linked to only one NUMA node.
On RISC-V architectures, this means a device is linked to only one PLIC, as there is one PLIC per
NUMA node. So only a processor from this NUMA node can serve interrupts from this device.

6.2.4 Interrupt routing on x86 architecture
On x86, interrupt routing goes through two tables configured by the kernel:

1. Routing table: associates an IRQ with an IDT number
2. IDT table (interrupt descriptor table): associates an IDT number to a interrupt handler
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Two tables allow more flexibility than a single table which associates an IRQ number directly with a
manager. This is different from RISC-V architecture where there can only be one interrupt handler,
that must check the kind of the interrupt to serve it (e.g., a device interrupt, a timer interrupt, etc.).

Example of routing:

• A device sends an IRQ (for example 0x14)

• The routing table associates IRQ14 with IDT47

• The IDT table indicates that IDT47 is managed by the function handle_disk_interrupt

This is with only one processor; on multicore x86 systems:

• XAPIC protocol on pentium (x2APIC since Intel Core processors)

– Each core has a number called APIC number (Advanced Programmable Interrupt Con-
troller)

– Each core handles interrupts via its LAPIC (local APIC )

– An IOAPIC routes an interrupt to a given LAPIC

∗ Routing table configured by the system kernel

6.2.5 Receiving an interrupt: simple routing (continued)
• In the processor, after executing each instruction

1. Check if an interrupt has been received
2. If so, switch to kernel mode and run the interrupt handler
3. Then switch back to the previous mode and continue the execution



66 CHAPTER 6. INTERRUPTS AND COMMUNICATION

• Note: a handler can be run at anytime
– Problem of concurrent access between handlers and the rest of the kernel code
– The solution is to mask interrupts, two ways:

1. raise priority threshold of IRQs accepted by the processor
2. disable them by clearing bit SIE (Supervisor Interrupts Enable) in register SSTATUS

6.2.6 MSI: Message Signaling Interrupt for advanced interrupt manage-
ment

• MSI: direct interrupts from devices to processors
– Each processor has its own IMSIC (Incoming MSI Controller)
– Different from the PLIC interrupting all processors that may serve an interrupt

• The OS configures an IMSIC via MMIO to enable or disable an interrupt
• The OS configures a device to direct its interrupts to MSI registers
• Used for performance or fine granularity in interrupt routing

6.2.7 MSIs and PLIC in RISC-V architectures

The PLIC (usually an APLIC, Advanced PLIC ) remains used by devices that do not (need to)
support MSI. When the platform supports MSIs, the APLIC converts wired (i.e., non message
signaled) interrupts into MSIs. This is configured by the OS, as if they were direct MSIs from
external devices.

6.2.8 MSIs on x86

On x86 systems, MSIs work roughly the same:

• MSI: direct interrupt from a device to a LAPIC without passing through the IOAPIC
– The kernel must configure the device so that it knows which LAPIC / IDT pair should

be generated
– Used when the need for performance is important
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6.2.9 Inter-core communication
• One core can send an interrupt to another core: this is called Inter-Processor Interrupt (IPI)
• Without MSIs:

– To send an IPI, a processor writes to another processor’s Core-Local Interrupt Controller
(CLINT) (in its MMIO registers)

– The destination processor receives a software interrupt
• With MSIs and IMSICs:

– A processor writes to another processor’s IMSIC like a device

6.2.10 IPIs on x86 architectures
• One core can send an interrupt to another core

– LAPIC x sends an IPI to LAPIC y
– In LAPIC y, receiving an IPI is associated with an IDT number

6.2.11 Other interruptions: system calls and exceptions
• The interrupt handler (the function addressed by register stvec) is also called when system

calls and exceptions occur
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– system calls are called by the userspace by executing the instruction ecall, which triggers
an interrupt of this type

– exceptions are faults that occur when executing instructions
∗ they trigger an interrupt that matches the fault type
∗ for instance, trying to read from an illegal address triggers a software interrupt with

exception code 0x5
– In other words, stvec points to the unique entrypoint into the kernel:

∗ from the software, via system calls or IPIs
∗ from the hardware, via external interruptions and exceptions

On x86 systems, the IDT table is used for every possible interruption:

• Used by interrupts as seen previously
• But also for a system call: int 0x64 simply generates the interrupt IDT 0x64
• But also to catch faults when executing instructions

– a division by zero generates the interrupt IDT 0x00, an access illicit memory (SIGSEGV)
the interrupt IDT 0x0e etc.

The IDT table is therefore the table that contains all of the entry points to the kernel:

• From the software via the system call
• From material for other IDTs

6.2.12 Time management: two sources
• Jiffies: global time source to update the date

– A dedicated device or the CLINT regularly sends IRQ
– Only a single core serves this IRQ to update the date

• Tick: core-local time source used for scheduling

– CLINTs are also used to generate periodic interrupts to their cores
– The system associates a handler with this timer interrupt
– May be less precise than the jiffies
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Virtual memory

7.1 Introduction
• A process needs to be present in main memory to run

• Central memory divided into two parts

– The space reserved for the operating system
– The space allocated to processes

• Memory management concerns the process space

• Memory capacities are increasing, but so are the requirements → Need for multiple memory
levels

– Fast memory (cache)
– Central memory (RAM)
– Auxiliary memory (disk)

• Principle of inclusion to limit updates between different levels

Regarding the principle of inclusion, in an Intel architecture, the L1 cache (Level 1) is included in
L2 cache (Level 2), which is itself included in RAM, which is included in the swap (disk).

Here are the typical access times to data located in the different types of memory on a “classic”
machine (Intel Core i5 Skylake processor) in 2017 1:

• data in the L1 cache: 4 cycles or 1 ns
• data in the L2 cache: 12 cycles or 3 ns (3 times slower than L1)
• data in the L3 cache: 44 cycles or 10ns (10 times slower than L1)
• data in RAM: 60 - 100 ns (100 times slower than L1)
• data on a NVMe disk: 20 µs (20,000 times slower than L1)
• data on an SSD disk: 150 µs (150,000 times slower than L1)
1Data available in the manual “*Intel 64 and IA-32 Architectures Optimization Reference Manual* ”
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• data on a hard disk: 10 ms (10 million times slower than L1)

The following table shows the cost difference between the types of memory (and the evolution over
the years):

Year 2008 2009 2010 2014 2019 2023
Hard disk drive, 7200 tr/mn (in €/GiB) 0,50 0,32 0,10 0,04 0.027 0.023
SSD disk (in €/GiB) – – – 0,50 0.17 0.09
USB key (in €/GiB) – – 1,64 0.62 0.27 0.06
NVMe (in €/GiB) – – – – 0.21 0.10
RAM (in €/GiB) – 37,00 21,85 8.75 7.23 2.75

7.1.1 Paging

7.1.1.1 Overview

• The address space of each program is split into pages
• Physical memory divided into page frames
• Matching between some pages and page frames

7.1.1.2 Status of memory pages

• The memory pages of a process can be

– In main memory / in RAM (active pages)
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– Non-existent in memory (inactive pages never written)
– In secondary memory / in the Swap (inactive pages that have already been written)

→ each process has a contiguous memory space to store its data

• The paging mecanism

– Translates virtual addresses to/from physical addresses
– Loads the necessary pages (in case of page faults)
– (Optionally) move active pages to secondary memory

In Linux, page frames are 4KB in size (defined size by the constants PAGE_SIZE and PAGE_SHIFT in
the file page.h).

7.1.1.3 Logical (or virtual) address

• Address space is divided using the most significant bits
– Logical address on k bits:

∗ Page number: p bits
∗ Offset in the page: d = (k - p) bits

→ 2p pages and each page contains 2k−p bytes
• Page size

– Usually 4 KiB (k-p = 12 bits, so p = 52 bits)
– Huge pages: 2 MiB, 1 GiB, 512 GiB, or 256 TiB pages

• Choice = compromise between various opposing criteria
– Last page is half wasted
– Small capacity memory : small pages
– Scalability of the page management system

On 64-bit Intel (x86_64) or ARM 64 bits architectures (ARMv8), the addresses are stored on 64
bits (i.e. size (void *) is 8 bytes), but only 48 bits are usable for virtual addresses.

On RISC-V architectures, a system can choose from four virtual address sizes, including 48 bits as
other architectures, and also 57 bits.

7.1.1.4 Huge pages

Some applications use large amounts of data (sometimes several GiB) that must be placed in a
large number of 4 KiB memory pages. In order to limit the number of pages to handle, some
architectures (especially x86_64 and RISC-V) allow the use of larger memory pages (typically 2 MiB
and 1 GiB, but also bigger) which are called huge pages in the Linux kernel (sometimes megapages
and gigapages).

7.1.1.5 Page table

• The correspondence between logical address and address physical is done with a page table
that contains
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– Page frame number
– Information bits (presence, permissions, upload timestamp . . . )

7.1.1.5.1 Implementation of a page table

• On x86_64 or RISC-V, a page table = 4-levels tree
– The physical address of a 512-entry root table is stored in the satp register (cr3 on x86

architectures)
– Each entry in a table gives the address of the following table
– virtual address decomposed into 4 indexes (n[0..3]) + 1 offset, then translated using:

uint64_t cur = %satp3; // cur = root table physical address
for(int i=0; i<3; i++)

cur = ((uint64_t*)cur)[n[i]]; // physical memory access, next entry
return cur + offset; // add the offset
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7.1.2 Translation Lookaside Buffer (TLB)

• Problem: any access to information requires several memory accesses
• Solution: use associative memories (fast access registers)
• Principle

– A number of registers are available
– Logical page number Np compared to the content of each register
– if found → gives the corresponding frame number Nc

– Otherwise use the page table

Intel architectures have Translation Look-aside Buffers (TLB) with 32, 64, or even 256 entries. TLB
are sometimes called address translation cache.

7.2 User point of view

7.2.1 Memory space of a process

• Composed of:
– kernel space
– the different sections of the executed ELF file (.text, .data, etc.)
– the heap
– the stack (one per thread)
– shared libraries
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7.2.2 Memory mapping
• How to populate the memory space of a process?

– For each ELF file to be loaded:
∗ open the file with open
∗ each ELF section is mapped in memory (with mmap) with the appropriate permissions
∗ Results are visible in /proc/<pid>/maps

$ cat /proc/self/maps
5572f3023000-5572f3025000 r--p 00000000 08:01 21495815 /bin/cat
5572f3025000-5572f302a000 r-xp 00002000 08:01 21495815 /bin/cat
5572f302e000-5572f302f000 rw-p 0000a000 08:01 21495815 /bin/cat
5572f4266000-5572f4287000 rw-p 00000000 00:00 0 [heap]
7f33305b4000-7f3330899000 r--p 00000000 08:01 22283564 /usr/lib/locale/locale-archive
7f3330899000-7f33308bb000 r--p 00000000 08:01 29885233 /lib/x86_64-linux-gnu/libc-2.28.so
7f33308bb000-7f3330a03000 r-xp 00022000 08:01 29885233 /lib/x86_64-linux-gnu/libc-2.28.so
[...]
7f3330ab9000-7f3330aba000 rw-p 00000000 00:00 0
7ffe4190f000-7ffe41930000 rw-p 00000000 00:00 0 [stack]
7ffe419ca000-7ffe419cd000 r--p 00000000 00:00 0 [vvar]
7ffe419cd000-7ffe419cf000 r-xp 00000000 00:00 0 [vdso]
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7.2.3 Memory allocation
• void* malloc(size_t size)

– Returns a pointer to an buffer of size bytes
• void* realloc(void* ptr, size_t size)

– Changes the size of a buffer previously allocated by malloc
• void* calloc(size_t nmemb, size_t size)

– Same as malloc, but memory is initialized to 0
• void *aligned_alloc( size_t alignment, size_t size )

– Same as malloc. The returned address is a multiple of alignment
• void free(void* ptr)

– Free an allocated buffer

• All these functions are implemented in the standard C library (which in some cases make
system calls).

• The malloc(3) algorithm is very efficient. It is not therefore generally not necessary to try to
optimize it.

However:

• When allocating a memory area that must be initialized at 0, we shall privilege calloc (3)
(it is more efficient than a malloc(3) followed by memset(3)).

• If necessary, mallopt allows to fine tune the behavior of malloc(3)
• Additionally, it is possible to customize the behavior of standard allocation / release routines

by setting __malloc_hook, __realloc_hook and __free_hook. Be careful, these mechanisms
can lead to reentrancy problems.

• When freeing a buffer with free, it is strongly advised to set the pointer to NULL. This allows
the program to crash immediatly if, by mistake, we access this (now inexistant) buffer again
using this pointer.

The following program illustrates how setting a pointer to NULL allows to crash immediatly and how
using a debugger allows to quickly find the origin of the error.

/**********************/
/* resetToNULL.c */
/**********************/

/* This program illustrates the value of assigning a variable to NULL
which contains a pointer to an unallocated buffer.
Indeed, it makes a segmentation fault, which makes it possible to
identify that we have executed an illegal operation. Using a
debugger allows to understand the problem.

*/
/* */
/* 1) Compile the program with the option -g */
/* cc -g -o resetToNULL resetToNULL.c */
/* 2) ./resetToNULL */
/* ==> Segmentation fault */
/* 3) ulimit -c unlimited */
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/* 4) ./resetToNULL */
/* ==> Segmentation fault (core dumped) */
/* 5) ddd ./resetToNULL core */

#include <stdlib.h>
#include <assert.h>

void h(char *p){
*p = 'a';

}

void g(char *p){
h(p);

}

void f(char *p){
g(p);

}

int main(){
char *p = NULL;

f(p);

p = malloc(1);
assert(p != NULL);

f(p);

free(p);
p = NULL;

f(p);

return EXIT_SUCCESS;
}

7.2.4 Memory alignment
• Memory alignment depends on the type of data

– char (1-byte), short (2-bytes), int (4-bytes), . . .

• A data structure may be larger than its content



7.2. USER POINT OF VIEW 77

• A data structure can be packed with __attribute__((packed))

Memory alignment applies to variables as well as to members of data structures.

The following program illustrates how alignement affects the size of a data structure:

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

struct plop {
int a;
char b;
int c;

};

struct plop_packed {
int a;
char b;
int c;

} __attribute__((packed));

int main(void) {

struct plop p1;
struct plop_packed p2;
printf("struct plop -- size: %lu bytes, address: %p\n",

sizeof(struct plop), &p1);
printf("\t.a -- size: %lu bytes, address: %p, offset: %lu\n",

sizeof(p1.a), &p1.a, offsetof(struct plop, a));
printf("\t.b -- size: %lu bytes, address: %p, offset: %lu\n",

sizeof(p1.b), &p1.b, offsetof(struct plop, b));
printf("\t.c -- size: %lu bytes, address: %p, offset: %lu\n",

sizeof(p1.c), &p1.c, offsetof(struct plop, c));
printf("\n");

printf("struct plop_packed -- size: %lu bytes, address: %p\n",
sizeof(struct plop_packed), &p2);

printf("\t.a -- size: %lu bytes, address: %p, offset: %lu\n",
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sizeof(p2.a), &p2.a, offsetof(struct plop_packed, a));
printf("\t.b -- size: %lu bytes, address: %p, offset: %lu\n",

sizeof(p2.b), &p2.b, offsetof(struct plop_packed, b));
printf("\t.c -- size: %lu bytes, address: %p, offset: %lu\n",

sizeof(p2.c), &p2.c, offsetof(struct plop_packed, c));
printf("\n");
return 0;

}

$ ./memory_alignment
struct plop -- size: 12 bytes, address: 0x7ffc05ad8184

.a -- size: 4 bytes, address: 0x7ffc05ad8184, offset: 0

.b -- size: 1 bytes, address: 0x7ffc05ad8188, offset: 4

.c -- size: 4 bytes, address: 0x7ffc05ad818c, offset: 8

struct plop_packed -- size: 9 bytes, address: 0x7ffc05ad817b
.a -- size: 4 bytes, address: 0x7ffc05ad817b, offset: 0
.b -- size: 1 bytes, address: 0x7ffc05ad817f, offset: 4
.c -- size: 4 bytes, address: 0x7ffc05ad8180, offset: 5

7.2.5 The libc point of view
• How to request memory from the OS

– void *sbrk(intptr_t increment)
∗ increase the heap size by increment bytes

– void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t
offset)

∗ map a file in memory
∗ if flags contains MAP_ANON, does not map any file, but allocates an area filled with

0s

7.3 Memory allocation strategies

7.3.1 Non-Uniform Memory Access
• Several interconnected memory controllers
• Memory consistency between processors
• Privileged access to the local memory bank
• Possible access (with an additional cost) to distant memory banks

→ Non-Uniform Memory Access → On which memory bank to allocate data?
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7.3.2 First touch allocation strategy
• Linux default lazy allocation strategy
• Allocation of a memory page on the local node when first accessed
• Assumption: the first thread to use a page will probably will use it in the future

double *array = malloc(sizeof(double)*N);

for(int i=0; i<N; i++) {
array[i] = something(i);

}

#pragma omp parallel for
for(int i=0; i<N; i++) {

double value = array[i];
/* ... */
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}

7.3.3 Interleaved allocation strategy

• Pages are allocated on the different nodes in a round-robin fashion
• Allows load balancing between NUMA nodes
• void *numa_alloc_interleaved(size_t size)

double *array =
numa_alloc_interleaved(sizeof(double)*N);

for(int i=0; i<N; i++) {
array[i] = something(i);

}

#pragma omp parallel for
for(int i=0; i<N; i++) {

double value = array[i];
/* ... */

}
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It is also possible to use set_mempolicy in order to choose an allocation strategy for future memory
allocations.

7.3.4 mbind

• long mbind(void *addr, unsigned long len, int mode, const unsigned long
*nodemask, unsigned long maxnode, unsigned flags)

• Place a set of memory pages on a (set of) NUMA node → allows manual placement of memory
pages

double *array = malloc(sizeof(double)*N);
mbind(&array[0], N/4*sizeof(double),

MPOL_BIND, &nodemask, maxnode,
MPOL_MF_MOVE);

#pragma omp parallel for
for(int i=0; i<N; i++) {

double value = array[i];
/* ... */

}
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Chapter 8

Architecture

8.1 Introduction
• Why this lecture?

– To understand what is happening in the “hardware” part of the execution stack
– To write programs that are efficient on modern machines

In fact, the compiler generally manages to generate a binary which exploits all the capacities of the
processor. But the compiler sometimes fails and generates non-optimized code. We must therefore
be able to detect the problem, and be able to write code that the compiler can optimize.

8.1.1 Moore’s Law
• 1965 - 2005

– Moore’s Law (1965): the number of transistors in microprocessors doubles every two
years

– The fineness of the processor engraving decreases
– The clock frequency increases

=⇒ Increased processor performance

• Since 2005

– The fineness of engraving continues to decrease (but less quickly)
– The clock frequency no longer increases due to heat dissipation
– Heat dissipation depends on the frequency, and the number of transistors
– Multiple computing units per processor
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8.1.2 Evolution of processors performance

Source: https://github.com/karlrupp/microprocessor-trend-data

8.2 Sequential processor
• An instruction requires N steps

– Fetch: load instruction from memory
– Decode: identify the instruction
– Execute: execution of the instruction
– Writeback: storage of the result

• Each step is processed by a processor circuit
• Most circuits are not used at every stage → One instruction is executed every N cycles

The number of steps required to execute an instruction depends on the processor type (Pentium 4:
31 steps, Intel Haswell: 14-19 steps, ARM9: 5 steps, etc.)

https://github.com/karlrupp/microprocessor-trend-data
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8.3 Instruction pipeline
At each stage, several circuits are used

→ One instruction is executed at each cycle

Figure 8.1: Execution of instructions on a processor with pipeline

8.3.1 Micro architecture of a pipeline
• Each stage of the pipeline is implemented by a set of logic gates
• Execute step: one subcircuit per type of operation (functional unit)

Figure 8.2: Micro-architecture of a pipeline

8.3.2 Superscalar processors
• Use of different functional units simultaneously

=⇒ several instructions executed simultaneously!

• Require to load and decode several instructions simultaneously
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Figure 8.3: Micro-architecture of a superscalar processor

8.3.2.1 Superscalar processors throughput

8.3.2.2 Dependence between instructions

Limitations of the superscalar:

• There should be no dependency between statements executed simultaneously.

• Example of non-parallelizable instructions

a = b * c;
d = a + 1;

• Degree of parallelism of the instructions: Instruction Level Parallelism (ILP)
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• Instructions executed in parallel must use different functional units

8.3.3 Branching
• How to fill the pipeline when the instructions contain conditional jumps?

cmp a, 7 ; a > 7 ?
ble L1
mov c, b ; b = c
br L2

L1: mov d, b ; b = d
L2: ...

• In case of a bad choice: the pipeline must be “emptied”

=⇒ waste of time

The cost of a wrong choice when loading a branch depends on pipeline depth: the longer the pipeline,
the longer it takes to empty it (and therefore wait before executing an instruction). For this reason
(among others), the depth of the pipeline in a processor is limited.

8.3.4 Branch prediction
• The processor implements a prediction algorithm
• General idea:

– For each conditional jump, store the previous results

0x12 loop:
...

0x50 inc eax
0x54 cmpl eax, 10000
0x5A jl loop
0x5C end_loop:

...
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The branch prediction algorithms implemented in modern processors are very advanced and reach a
efficiency greater than 98 % (on the SPEC89 benchmark suite).

To know the number of good / bad predictions, we can analyze the hardware counters of the
processor. With the PAPI library <http://icl.cs.utk.edu/projects/papi/>, the PAPI_BR_PRC and
PAPI_BR_MSP counters give the number of conditional jumps correctly and incorrectly predicted.

Linux perf also allows collects this information (among others). For example:

$ perf stat -e branches,branch-misses ./branch_prediction 0
is random is not set
100000000 iterations in 1178.597000 ms
result=199999996

Performance counter stats for './branch_prediction 0':

2447232697 branches
6826229 branch-misses # 0,28% of all branches

1,179914189 seconds time elapsed

1,179784000 seconds user
0,000000000 seconds sys

8.3.5 Vector instructions
• Many applications run in Data Parallelism mode
• Single Instruction, Multiple Data (SIMD): the same operation applied to a set of data

for(i=0; i<size; i++) {
C[i] = A[i] * B[i];

}

• Example: image processing, scientific computing

http://icl.cs.utk.edu/projects/papi/
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• Using vector instructions (MMX, SSE, AVX, . . . )

• Instructions specific to a processor type

• Process the same operation on multiple data at once

for(i=0; i<size; i+= 8) {
*pC = _mm_mul_ps(*pA, *pB);
pA++; pB++; pC++;

}

Vector instructions were democratized at the end of the years 1990 with the MMX (Intel) and
3DNow! (AMD) instruction sets that allow to work on 64 bits (for example to process 2 32-bit
operations at once). Since then, each generation of x86 processors brings new extension to the
instruction set: SSE2, SSSE3 (128 bit), SSE4, AVX, AVX2 (256 bit), AVX512 (512 bit). The
other types of processors also provide vector instructions sets (eg NEON [128 bits], Scalable Vector
Extension [SVE] on ARM), or the Vector Extension of RISC-V.

Vector instruction sets are specific to certain processors. The /proc/cpuinfo file contains (among
others) the instructions sets that are available on the processor of a machine. For example, on an
Intel Core i7:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 69
model name : Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz
stepping : 1
microcode : 0x1d
cpu MHz : 1484.683
cache size : 4096 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64
monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx
f16c rdrand lahf_lm abm ida arat epb pln pts dtherm tpr_shadow vnmi
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flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms
invpcid xsaveopt

bugs :
bogomips : 5387.82
clflush size : 64
cache_alignment : 64
address sizes : 39 bits physical, 48 bits virtual
power management:
[...]

The flags field contains the list of all the capabilities of the processor, especially the available
instructions sets: mmx, sse, sse2, ssse3, sse4_1, sse4_2, avx2.

Vector instruction can be used directly in assembler or by exploiting the intrinsics provided by
compilers. However, because of the number of available instruction sets and since each new processor
generation provides new instructions sets, it is recommended to leave the compiler optimize the
code, for example using the -O3 option.

8.4 Parallel Processing

8.4.1 Hyperthreading / SMT
• Problem with superscalar / vector processors:

– The application must have enough parallelism to exploit
– Other applications may be waiting for the CPU

• Simultaneous Multi-Threading (SMT, or Hyperthreading)

– Modify a superscalar processor to run multiple threads
– Duplicate some circuits
– Share certain circuits (eg FPU) between processing units

SMT is an inexpensive way to increase the performance of a processor: by duplicating the “small”
circuits (ALU, registers, etc.) and by pooling the “big” circuits (FPU, prediction of branches, caches),
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we can execute several threads simultaneously. The additional cost in terms of manufacturing is
light and the gain in performance can be significant.

Since the dispatcher schedules the instructions of several threads, a branch miss-prediction becomes
less serious since while the pipeline of the thread is emptied, another thread can be scheduled.

The performance gain when multiple threads are running is not systematic since some circuits
remain shared (by example, the FPU).

8.4.2 Multi-core processors
• Limited scalability of SMT

• dispatcher is shared

• FPU is shared

→ Duplicate all the circuits

It is of course possible to combine multi-core with SMT. Most semiconductor foundries produce
multi-core SMT processors: Intel Core i7 (4 cores x 2 threads), SPARC T3 Niagara-3 (16 cores x 8
threads), IBM POWER 7 (8 cores x 4 threads).

8.4.3 Symmetric Multi-Processing (SMP)
• Multiple processors sockets on a motherboard
• The processors share the system bus
• Processors share memory
• Scalability problem: contention when accessing the bus
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8.4.4 NUMA architectures
• NUMA nodes connected by a fast network
• Memory consistency between processors
• Privileged access to the local memory bank
• Access possible (with an additional cost) to memory banks located on other nodes

→ Non-Uniform Memory Architecture

The first NUMA machines (in the 1990s) were simply sets of machines linked by a proprietary
network responsible for managing memory transfers. Since 2003, some motherboards allow to
plug several Opteron processors (AMD) connected with a HyperTransport link. Intel subsequently
developed a similar technology (Quick Path Interconnect, QPI) to connect its Nehalem processors
(released in 2007).

8.5 Memory hierarchy

8.5.1 Memory wall
• Until 2005: increase in CPU performance: 55 % / year
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• Since 2005: increase in the number of cores per processor
• Increased memory performance: 10 % / year
• The memory accesses which are now expensive: Memory Wall
• Mechanisms are needed to improve memory performance

Until the 1990s, performance was limited by the performance of the processor. From the software
point of view, developers had to minimize the number of instructions to be executed in order to
achieve the best performance.

As the performance of processors increases, the bottleneck is now the memory. On the software side,
we therefore seek to minimize the number of costly memory accesses. This pressure on memory is
exacerbated by the development of multi-core processors.

For example, an Intel Core i7 processor can generate up to 2 memory access per clock cycle. A
18-core processor with hyper-threading (ie 36 threads) running at 3.1 Ghz 1 can therefore generate
2 × 36 × 3.1 × 109 = 223.2 billion memory references per second. If we consider access to 64-bit
data, this represents 1662 GiB/s (1.623 TiB/s). In addition to these data accesses, the memory
access to the instructions (up to 128 bits per instruction) also have to be taken into account. We
thus arrive to a 3325 GiB/s (therefore 3.248 TiB/s !) maximum flow.

For comparison, in 2023 a DDR5 RAM DIMM has a maximum throughput of around 70 GiB/s.
It is therefore necessary to set up mechanisms to prevent the processor from spending all its time
waiting for memory.

8.5.2 Cache memory
• Memory access (RAM) are very expensive (approx. 60 ns - approx. 180 cycles)
• To speed up memory access, let’s use a fast cache memory:

– L1 cache: very small capacity (typically: 64 KiB), very fast (approx. 4 cycles)
– L2 cache: small capacity (typical: 256 KiB), fast (approx. 10 cycles)
– L3 cache: large capacity (typically: between 4 MiB and 30 MiB), slow (approx. 40 cycles)

• Very expensive hard disk access (SWAP): approx. 40 ms (150 µs on an SSD disk)

1Example: an Intel Xeon Gold 6254 released in 2019
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To visualize the memory hierarchy of a machine, you can use the lstopo tool provided by the hwloc
project.

Figure 8.4: Source: https://gist.github.com/jboner/2841832

8.5.3 Memory Management Unit (MMU)

• Translates virtual memory addresses into physical addresses
• Look in the TLB (Translation Lookaside Buffer), then in the page table
• Once the physical address is found, request the data from the cache / memory

https://gist.github.com/jboner/2841832


8.5. MEMORY HIERARCHY 95

8.5.3.1 Fully-associative caches

• Cache = array with N entries
• For each reference, search for Tag in the array

– If found (cache hit) and Valid = 1: access to the cache line Data
– Otherwise (cache miss): RAM access

• Problem: need to browse the whole table

→ Mainly used for small caches (ex: TLB)

The size of a cache line depends on the processor (usually between 32 and 128 bytes). You can find
this information in /proc/cpuinfo:

$ cat /proc/cpuinfo |grep cache_alignment
cache_alignment : 64
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8.5.3.2 Direct-mapped caches

• Using the least significant bits of the address to find the index of the entry in the cache
• Comparison of the Tag (most significant bits) of the address and the entry.

→ Direct access to the cache line

• Warning: risk of collision

• example: 0x12345678 and 0xbff72678

8.5.3.3 Set-associative caches

• Index to access a set of K cache lines
• Search for the Tag among the addresses of the set

→ K-way associative cache (in French: Cache associatif K-voies)
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Nowadays, caches (L1, L2 and L3) are generally associative to 4 (ARM Cortex A9 for example), 8
(Intel Sandy Bridge), or even 16 (AMD Opteron Magny-Cours) ways.

8.5.3.4 Cache consistency

• What if 2 threads access the same cache line?

• Concurrent read: replication in local caches

• Concurrent write: need to invalidate data in other caches

• Cache snooping: the cache sends a message that invalidates the others caches

To detail this course a little more, we recommend this page web: Modern microprocessors – A 90
minutes guide! http://www.lighterra.com/papers/modernmicroprocessors/.

For (many) more details, read the books [bryant] and [patterson2013computer] which describe in detail
the architecture of computers. If you are looking for specific details, read [patterson2011computer].

http://www.lighterra.com/papers/modernmicroprocessors/
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Chapter 9

Input/Output

In this lecture, we mainly talk about files, as this is the easiest example of I/O to manipulable.
However, note that the content of the first 3 sections apply to I/O other than files (eg sockets).

9.1 Reminder on files:
• A file is a series of contiguous bytes stored in a medium (for example, a disk) under a name

(the “name of the file”).

• We distinguish several types of the files:

– text: containing bytes that can be displayed on the screen. This type of files consists of
lines identified by the character end of line (on Unix, ASCII code character 10 while on
Windows, ASCII code character 10 followed by a character of ASCII code 13);

– binary: containing bytes that cannot be displayed on the screen.

On Unix, the commands hexdump -C filename, bless filename or xxd filename show the exact
content of a file. Use them to

1. compare the contents of helloWorldUnix.c and helloWorldWindows.c

2. see that the file default_names_fichierIssuDuTP10DuModuleCSC4103.txt is not quite a
text file (and, see also how are the accented characters stored in a file)

• When you “open” a file, the operating system provides a notion of current position (sometimes
called offset in the rest of this course) for reading or writing.

– This current position determines which byte in the file will be read/written during the
next I/O operation.

– This offset advances each time a read or write operation is performed.

99
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– The operating system provides the user with primitives to explicitly change this position
(without reading or writing bytes).

• The “end of a file” corresponds to the location behind the last byte of the file. When a program
reaches the end of file, it cannot read bytes anymore. On the other hand, the program can
write bytes (depending on the mode in which the file was opened).

• There are 3 ways to access a file:

– Sequential: the bytes are read one after the others from the beginning of the file.
– Direct: you can set the offset without reading bytes before offset.
– Indexed sequential: the file contains records, each record being identified by a key (unique

or no). Using the key, you can position the offset at the start of a recording. You can
also read the recordings in the order defined by their key.

The Linux system and the C library provide sequential and direct access modes. For an indexed
sequential access mode, other libraries are required (Unix NDBM, GDBM, Oracle Berkeley DB,
. . . ).

9.2 Buffered / non-buffered IO
• Buffered I/O

– Write operations are grouped in a buffer which is written to disc from time to time
– When reading, a data block is loaded from disk to buffer

→ a buffered I/O ̸= an operation on the disk

– eg. fopen, fread, fscanf, fwrite, fprintf, etc.
– Data stream identified by an opaque pointer FILE*

• Unbuffered I/O

– an unbuffered I/O = an operation on the disk †
– eg. open, read, write, etc.
– Open file identified by a file descriptor of type int

† To be exact, an “unbuffered” I/O generates a system call. The OS can then decide to cache the
data or no.

9.3 I/O primitives

9.3.1 File open / close
• int open(const char *path, int flags, mode_t mode)
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– returns f_id
– flags can take one of the following values:

∗ O_RDONLY: read only
∗ O_WRONLY: write only
∗ O_RDWR: read and write

– Additional flags:
∗ O_APPEND: append data (write at the end of the file)
∗ O_TRUNC: truncate (empty) the file when opening it
∗ O_CREAT: creation if the file does not exist. The permissions are (mode & ∼ umask)
∗ O_SYNC: open file in synchronous write mode
∗ O_NONBLOCK (ot O_NDELAY): open and subsequent operations performed on the de-

scriptor will be non-blocking.
• int close(int desc)

About the O_SYNC option in open:

• To improve performance, by default, during a write operation, the operating system does not
physically write the bytes on disk (they are stored in a kernel cache, waiting to be writen to
disk)

• Therefore, in the event of a sudden stop of the machine (example: power outage):

– data thought to have been written to disk may to be lost because they were in fact in
memory;

– there is also a risk of inconsistency in the data on the disk.

• Solutions to synchronize file data in memory with the disc:

– implicit synchronization (i.e. on each write): adding the O_SYNC option when opening
the file;

– explicit synchronization (i.e. the application decides) via the int fsync(int fd) primi-
tive

Note that we can also create a file using the creat primitive:

• int creat(const char *path, mode_t mode) : return value = f_id
– which is equivalent to the following call to open:
– open(path, O_WRONLY|O_CREAT|O_TRUNC, mode).

9.3.2 Reading on a file descriptor
• ssize_t read(int fd, void *buf, size_t count)

– returns the number of bytes successfully read
– When read returns, the buf zone contains the read data;
– In the case of a file, the number of bytes read may not be be equal to count:

∗ We reached the end of the file
∗ We did a non-blocking read and the data was exclusively locked
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In the case where the read function is used on a descriptor other than a file (e.g. a pipe, or a socket),
the fact that the number of bytes read may not equal count may have other meanings:

• for a communication pipe (see the Inter-process communication lecture), the correspondent
has closed its end of the pipe.

• for a socket (see course NET4103), the network protocol uses data packets smaller than the
size that is requested.

9.3.3 Writing on a file descriptor
• ssize_t write(int fd, const void *buf, size_t count)

– return the number of bytes written
– In the case of a file, the return value (without error) of the write operation means that:

∗ Bytes were written to kernel caches unless O_SYNC was specify at file open;
∗ Bytes have been written to disk if O_SYNC was specified.

– In the case of a file, a number of bytes written that is different from count means an
error (e.g. No space left on device)

Writing to disk is atomic: if two processes P1 and P2 simultaneously write to the same file in the
same location, when the two processes have finished their writing, we will find:

• either the data written by P1,
• either the data written by P2,
• but never a mix of the data written by P1 and P2.

Note that when the file is opened with the option O_APPEND, if P1 and P2 write simultaneously (at
the end of the file, because of O_APPEND), when the two processes will have finished their writing,
we will find at the end of file:

• either the data written by P1 followed by the one written by P2,
• or the data written by P2 followed by the one written by P1.

No writing is therefore lost! Attention, this concurrent write at the end of file is not equivalent to
two processes simultaneously performing the following operations:

lseek(fd,0,SEEK_END); /* move the cursor to the end of file */
write(fd,data,taille);

In fact, in the latter case, one of the written data may by overwritten by the other.

The copy.c file on the next page illustrates the use of open, read, write and close.

/************/
/* copy.c */
/************/
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
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#include <stdio.h>

#define USAGE "USAGE: copy src dest\n"
#define WRITE_ERROR "write error (no space left on device ?)\n"

int source, dest;
int buf;
int nb_read, nb_written;

int main(int argc, char *argv[]) {
if (argc != 3) {

write(STDERR_FILENO, USAGE, strlen(USAGE));
return EXIT_FAILURE;

}
source = open(argv[1], O_RDONLY);
if (source < 0) {

perror(argv[1]);
return EXIT_FAILURE;

}
dest = open(argv[2],

O_WRONLY|O_CREAT|O_TRUNC,
S_IRWXU|S_IRWXG|S_IRWXO);

if (dest < 0) {
perror(argv[2]);
return EXIT_FAILURE;

}
while ((nb_read = read(source, (void*)&buf, sizeof(buf))) > 0) {

nb_written = write(dest, (void*)&buf, nb_read);
if (nb_written <= 0) {

if (nb_written == 0) {
write(STDERR_FILENO, WRITE_ERROR, strlen(WRITE_ERROR));

}
else {

perror("write");
}
return EXIT_FAILURE;

}
}
if (nb_read < 0) {

perror("read");
return EXIT_FAILURE;

}
if (close(source) < 0) {

perror(argv[1]);
return EXIT_FAILURE;

}
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if (close(dest) < 0) {
perror(argv[2]);
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

This operation of copying the contents of one file to another descriptor is an operation frequently
performed in web servers. Indeed, these servers must in particular send the content of files to client
who have requested them. This is why the linux system offers the sendfile primitive (ssize_t
sendfile (int out_fd, int in_fd, off_t * offset, size_t count)). It reads count bytes
of in_fd and write them to out_fd (which must match an socket). sendfile is more more efficient
than the combination read / write.

The fallocate function is the Linux specific version of the portable function posix_fallocate.

9.3.4 File descriptor duplication
• Mechanism mainly used to perform redirection of the three standard I/O files.
• int dup(int old_fd)

– return a new file descriptor new_fd
– associates the smallest available file descriptor of the calling process the same entry in

the open files table as the descriptor old_fd
• int dup2(int old_fd, int new_fd)

– force the file descriptor new_fd to become a synonym of the old_fd descriptor. If the
descriptor new_fd is not available, the system first closes close(new_fd)

9.4 I/O and concurrence

9.4.1 Locking a file
struct flock {

short l_type;
short l_whence;
off_t l_start;
off_t l_len;

};

int fcntl(int fd, F_SETLK, struct flock*lock);

• Locks are attached to an inode. So locking a file affects all file descriptors (and therefore all
open files) corresponding to this inode
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• A lock is the property of a process: this process is the only one authorized to modify or remove
it

• Locks have a scope of [integer1 : integer2] or [integer : ∞]

• Locks have a type:

– F_RDLCK: allows concurrent read access
– F_WRLCK: exclusive access

The exclusive-lock.c file illustrates exclusive file locking:

/***********/
/* exclusive_lock.c */
/***********/
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main(){
int fd;
struct flock lock;

fd = open("/tmp/ficTest",O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
if (fd < 0) {

perror("open");
exit(EXIT_FAILURE);

}

/* Exclusive lock on the 15th byte */
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 15;
lock.l_len = 1;

/* Because of the F_SETLKW parameter, we get stuck on the fcntl if */
/* the lock cannot be acquired */
printf("attempt to acquire an exclusive lock by process %d...\n",

getpid());
if (fcntl(fd, F_SETLKW, &lock) < 0){

perror("Acquiring lock");
exit(EXIT_FAILURE);

}
printf("... Exclusive lock acquired by process %d\n", getpid());

/* Here we could do the processing that needed to be protected */
/* by the lock */
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sleep(10);

/* Release the lock */
printf("Releasing the lock by process %d...\n", getpid());
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 15;
lock.l_len = 1;
if (fcntl(fd, F_SETLK, &lock) < 0){

perror("Releasing lock");
exit(EXIT_FAILURE);

}
printf("...OK\n");

return EXIT_SUCCESS;
}

The shared-lock.c file illustrates the shared locking:

/*****************/
/* shared_lock.c */
/*****************/
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main(){
int fd;
struct flock lock;

fd = open("/tmp/ficTest",O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
if (fd < 0) {

perror("open");
exit(EXIT_FAILURE);

}

/* Shared lock on the 15th byte */
lock.l_type = F_RDLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 15;
lock.l_len = 1;

/* Because of the F_SETLKW parameter, we get stuck on the fcntl if */
/* the lock cannot be acquired */
printf("attempt to acquire a shared lock by process %d...\n",
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getpid());
if (fcntl(fd, F_SETLKW, &lock) < 0){

perror("Acquiring lock");
exit(EXIT_FAILURE);

}
printf("... shared lock acquired by process %d\n", getpid());

/* Here we could do the processing that needed to be protected */
/* by the lock */
sleep(10);

/* Release the lock */
printf("Releasing the lock by process %d...\n", getpid());
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 15;
lock.l_len = 1;
if (fcntl(fd, F_SETLK, &lock) < 0){

perror("Releasing lock");
exit(EXIT_FAILURE);

}
printf("...OK\n");

return EXIT_SUCCESS;
}

• If we run exclusive-lock first, running exclusive-lock or shared-lock wait before locking.

• If we run shared-lock first, another shared-lock can set the (shared) lock. On the other
hand, a exclusive-lock must wait to be able to lock.

• Note that exclusive_lock may suffer starvation:

– start a 1st shared_lock.
– start exclusive_lock: it wait
– start a 2nd shared_lock. The 1st shared_lock ends. But as the 2nd shared_lock is

running, exclusive_lock is still waiting.
– start a 3rd shared_lock. The 2nd shared_lock ends. But as the 3rd shared_lock is

running, exclusive_lock is still waiting.
– we see that as long as shared_lock starts while the previous shared_lock has not finished

running, exclusive_lock must wait: exclusive_lock may face starvation.

To prevent this starvation, we must add a mutual exclusion.

9.4.2 Offset manipulation
• off_t lseek(int fd, off_t unOffset, int origine)
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– return the new offset

– allows to handle the offset of the file

• Warning ! Race condition if several threads manipulate the file

• Solutions:

– Handling of the file in mutual exclusion
– Using pread or pwrite instead of lseek + read or lseek + write

9.5 Improving the I / O performance

9.5.1 Giving advices to the kernel
• int posix_fadvise(int fd, off_t offset, off_t len, int advice)

– examples of advice: POSIX_FADV_SEQUENTIAL, POSIX_FADV_RANDOM, POSIX_FADV_WILLNEED
– return value = 0 if OK, error number otherwise
– allows you to tell the kernel how the programm will access a file, which allows the kernel

to optimize accordingly

Since January 2011, we know that this function is used in Firefox to reduce startup time by 40 %
to 50 % by loading more efficiently GUI libraries xul.dll and mozjs.dll (more information here
https://bugzilla.mozilla.org/show_bug.cgi?id=627591).

9.5.2 Asynchronous I/O
int aio_read(struct aiocb *aiocbp);
int aio_write(struct aiocb *aiocbp);

• Starts an asynchronous read / write operation
• Returns immediately

int aio_suspend(const struct aiocb * const aiocb_list[],
int nitems,
const struct timespec *timeout);

• Waits for the end of an asynchronous operation

int aio_error(const struct aiocb *aiocbp);

• Tests the end of an asynchronous operation

For more information on asynchronous I/O, refer to the documentation (man 7 aio).

https/string://bugzilla.mozilla.org/show_bug.cgi?id=627591
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The current implementation of AIO Posix is provided in user-land by libc and can cause scalability
issues. Another solution is to use the Asynchronous I/O interface provided by the Linux kernel (see
the system calls io_submit, io_setup, etc.), or the libaio library which provides an overlay to
Linux system calls.

9.5.3 mmap
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset);

• “map” a file in memory
• memory accesses to the buffer are transformed into disk operations

int munmap(void *addr, size_t length);

• “unmap” a buffer

To ensure that the memory accesses have been passed on to the disk, you can use the msync function.
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Chapter 10

File systems

10.1 Device and device driver

10.1.1 Device and device driver
• Device = hardware component other than CPU and memory

• Device driver = software allowing access to a device

– 1 data structure giving the status of the device
– 1 input / output function allowing access to the device
– The driver is usually found in the kernel

10.1.2 Devices in UNIX
• A device is identified by a number called dev

– Most significant bits (major): driver number

∗ For example: 8 = ssd hard drive driver

• Least significant bits (minor): device number

– For example: 0 = disk 1, 1 = disk 1 / part 1, 2 = disk 1 / part 2

• The kernel contains a table which associates a driver number with the driver (access function
+ status)

111
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10.1.3 2 types of peripherals
• “character” devices

– Read / write byte by byte
– Generally access via MMIO or input / output bus

→ blocks the CPU during the I/O operation

– Keyboard, printer, sound card . . .

• “block” devices

– Read / write by data blocks (typically 512 bytes)
– The device is therefore seen as an array of blocks
– Usually access via DMA

→ does not block the CPU during the I / O operation

– Hard disk, DVD player . . .

10.1.4 Block devices in xv6
• A single block device driver in xv6

– Manages virtio hard disks (emulated by Qemu)
– Function virtio_disk_rw() in virtio.c

• virtio_disk_rw() takes two parameters:

– a boolean, write, to tell if it is a read or a write

– a buf (buf.h) structure

∗ buf.dev/blockno: access to block blockno from disk dev
∗ buf.data: data read or written

· If write == 0, the output of virtio_disk_rw, data = data read
· If write == 1, the input of virtio_disk_rw, data = data to write

10.1.5 Principle of the virtio_disk_rw algorithm
• virtio_disk_rw mainly performs the following actions:

– Setup the DMA data transfer:
∗ From disk to memory on a read
∗ From memory to disk on a write

– Sleep the process with the sleep function (see lecture #4)
→ switch to another ready process

• Once the transfer is complete
1. The virtio disk generates an interrupt
2. The interrupt is handled by the virtio_disk_intr function
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3. virtio_disk_intr calls wakeup to wake up the sleeping process

xv6 is written to run on a virtual machine, i.e., on a special environment where devices are indeed
virtualized. One interface designed to perform best with those virtual devices is the virtio interface.
While the virtio protocol is different from the one used by real, physical block devices (e.g., IDE or
SATA), in both cases, DMA and interruptions are used.

10.2 The I / O cache
• Disk access is very slow compared to memory access

– Hard disk drive: several milliseconds
– SSD disk: x10, hundreds of microseconds
– NVMe disk: x100, microseconds
– Memory: x100, dozens of nanoseconds

• I/O cache improves the performance of block type devices

– Keeps frequently or recently used blocks in memory
– Managed by the operating system kernel

10.2.1 Principle of an I/O cache
• The system manages a set of buffers in memory

• To read a block (read operation)

– If the block is not yet in the cache
1. Remove an unused buffer from the cache
2. Copy the contents of the disk block to this buffer

– Otherwise, simply return the buffer associated with the block

• To modify a block (write operation)

1. Read the block (call the read operation)
2. Modify the contents of the buffer in memory
3. Mark buffer as modified (written to disk later)

10.2.2 The xv6 buffer cache
• buffer cache = xv6 I/O cache (bio.c)

– Made up of a finite set of buf structures
– Each buf structure is associated with a block of a disk

∗ A buf can be valid if its block’s data has been read, invalid otherwise
– Each buf has a reference counter to avoid eviction while still in use
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10.2.3 How the buffer cache works: buffer management (1/3)
• The buf structures form a circular double linked list, the head is the most recently used

block
• struct buf* bget(uint dev, uint blkno): return a locked buffer associated with (dev,

blkno)
– If there is already an buffer associated with (dev,blkno)

∗ Increment the reference counter of the buffer
∗ Lock the buffer
∗ Return the buffer

– Otherwise
∗ Search for a buffer with counter == 0
∗ Associate the buffer with (dev, blkno)
∗ And then, same as above

10.2.4 How the buffer cache works: read buffer (2/3)
• struct buf* bread(uint dev, uint blkno)

– Goal: return a locked buffer for this block in the valid state
1. Call bget() to find a buffer for this block
2. If the buffer is invalid, call virtio_disk_rw()

• void bwrite(struct buf* b)
– Call virtio_disk_rw() to write the buffer data to the disk

10.2.5 How the buffer cache works: write buffer (3/3)
• void brelse(struct buf* b)

– Release the lock associated with b
– Decreases the reference counter
– Move the buffer to the head of the list (most recently used) if it is unused

10.3 The log

10.3.1 Operation versus writing to disk
• A write operation of a process often requires several block writes

– File creation requires:
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∗ Allocation of a new file
∗ Adding the name to a directory

– Adding data to a file requires:

∗ Writing new blocks to disk
∗ Updating the file size

– Deleting a file requires:

∗ Deleting the data blocks from the file
∗ Deleting the name from the directory

– . . .

10.3.2 Consistency issues
• The system can crash anytime

→ Inconsistency if it stops in the middle of an operation

– A name in a directory references a non-existent file
– Data added to a file but size not updated
– . . .

• Operations must be propagated in the order in which they were performed

→ Inconsistency if propagation in random order

– Adding a file then deleting =⇒ the file does not exist at the end
– Deleting a file then adding =⇒ the file exists at the end
– Similarly, adding data then truncating (size should be 0)
– . . .

10.3.3 Bad solutions
• No cache when writing (directly propagate write operations)

– Very inefficient because each write becomes very (very!) slow

• Recovery in the case of a crash

– Recovering a file system is slow

– examples: FAT32 on Windows or ext2 on Linux

– Recovering is not always possible

→ a crash makes the filesystem unusable!
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10.3.4 First idea: transactions
• A transaction is a set of writes that is

– Either fully executed
– Or not executed at all

• Principle of implementation

– An operation (coherent set of writes) == a transaction
– The writes of a transaction are first written to disk in a “pending” area
– Once the operation is complete, the “pending” area is marked as valid (the transaction

is complete)
– Regularly (or in the event of a crash), validated writes in the pending zone are propagated

to the file system

10.3.5 Second idea: log
• To ensure that the entries are propagated in order in which they were executed, the pending

zone is structured like a log

– Each entry is added at the end of the log
– The validated transactions of the pending zone are propagated to the file system in the

order of the log (from the start of the log to the end)

10.3.6 Third idea: parallel log
• Problems: Multiple processes may perform transactions in parallel

– Parallel transaction writes are interleaved in the log

→ How do you know which ones are validated?

• Classic solution

– If several transactions in parallel, all the operations are validated when the last one is
completed

– Advantage: easy to implement (count of the number of operations in parallel)
– Disadvantage: risk of never validating if new operations continue to arrive

10.3.7 Log structure
• The system technically manages two logs

– One in memory called memory log

∗ Contains only the list of modified block numbers
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∗ The content of the modified blocks is in the buffer cache

– One on disk called disk log

∗ Contains the list of modified block numbers and a copy of the blocks
∗ Note: the block is propagated from the log to the filesystem later

→ The system can therefore manage up to 3 copies of a block

• One on disk in the file system called disk block
• One on disk in the log called disk log block
• One in memory in the buffer cache called cached block

10.3.8 Log algorithm principle
• Steps to modify block number n

1. load the disk block in the buffer cache
2. modification of the buffer (i.e. cached block)
3. add n to the list of modified blocks in the memory log

• At the end of an operation, steps to validate the transaction
1. copy modified cached blocks to disk log
2. copy the modified block list to disk log
3. mark the transaction as validated

• Later, to propagate the transaction
1. copy disk log blocks to file system
2. reset disk log and memory log

10.3.9 Using the log
• Three functions in the log management interface (log.c)

– begin_op() : start a transaction
– end_op() : validate a transaction
– log_write(struct buf* b) : add b to the transaction

• To perform a logged operation, instead of calling directly bwrite (), we have to execute:

begin_op();
b = bread(...);
// Modify data of b
...
log_write(b2);
...
end_op();
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10.3.10 Implementation in xv6 (1/3)
• void begin_op() : start a transaction

– If log writing to disk in progress, wait
– If the log is full, wait
– Increments the number of pending operations (log.outstanding)

• void end_op() : complete a transaction

– Decrement the number of operations in progress, and if equal to 0:

∗ Write memory log + cached blocks in disk log (write_log())
∗ Mark committed disk log transaction (write_head())
∗ Propagate writes from disk log to the filesystem (install_trans())
∗ Delete logs in memory and on disk (write_head())

10.3.11 Implementation in xv6 (2/3)
• void log_write(struct buf* b)

– Goal: put the block associated with b in the log
– Find an entry for the block in the log

∗ If already in the log: absorb the log entry (i.e., do nothing: the block is already
logged to be written)

∗ If new to the log:
1. Add block number to the memory log
2. Increase the reference counter of the buffer b to prevent it from leaving the buffer

cache

The log controls block writes and releases through log_write() and end_op(). System calls that
implement access to blocks never use bwrite() and brelse() directly. Instead, the log keeps track
of blocks that must be written to disk: they are called dirty blocks, because their content cached in
the buffer cache is different from their content in the filesystem on the disk.

• In log_write(), the log keeps a reference on the buffers of *dirty blocks to prevent their
eviction until it calls brelse() in end_op()

• end_op() commits transactions by writing logged dirty blocks to the disk log, and then to the
filesystem, using bwrite()

10.3.12 Implementation in xv6 (3/3)
• After a crash, call install_trans() which propagates the writes from disk log to file system

– In the worst case, writes that had already been performed are replayed
– But at the end of the replay, the filesystem is in a consistent state
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10.4 Partitions and file systems

10.4.1 File system
• File system: defines the structure for storing files (often for a block type device)

– UFS : Unix Files System (xv6, BSD)
– ext : extended file system (Linux - ext4 nowadays)
– NTFS : New Technology File System (Windows)
– APFS : APple File System (MacOS)
– FAT : File Allocation Table (Windows)
– BTRFS : B-TRee File System (Linux)
– and many others !

10.4.2 Principle of a file system
• File = consistent set of data that can be read or written

• Filesystem = associate names and files

– Example : /etc/passwd → root:*:0:0:System Administrator...

– Usually a special symbol is used as a separator for directories

∗ / in UNIX systems, \ in Windows systems

10.4.3 Partitions
• A disk is often made up of several partitions

– Partition = continuous area that contains a file system

• Typical structure of a disk

– First block: partition table

∗ For example: Master Boot Record

– Blocks 2 to x: kernel loader

∗ In charge of loading the kernel of one of the partitions
∗ For example: LILO, GRUB

– Blocks x to y: partition 1

– Blocks y to z: partition 2

– etc. . .
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10.4.4 Disk image
• A file itself can contain the data of a complete disc

– Called a disk image or a virtual disk
– Typically used in virtualization
– For example: xv6.img is the disk image used with the qemu emulator to start xv6

10.5 UFS/xv6 file system

10.5.1 Overall file system structure
• Five large contiguous zones (in fs.h)

– The super block describes the other areas
– The journal contains the disk logs
– The dinode table contains the metadata of the files (size, type like ordinary or directory

. . . )
– The table of free blocks indicates the free blocks
– The data blocks area contains the data of the files

10.5.2 Dinode
• A file on disk consists of:

– metadata called a dinode (fixed size, see fs.h)

∗ file type (ordinary, directory, device)
∗ file size
∗ the list of the file data blocks
∗ an indirection block (see following slides)
∗ device number if device file
∗ number of hard links to the file (reminder: a hard link is a name in a directory)

– data blocks

∗ these are the blocks that contain the content of the file
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10.5.3 Data blocks of a file
• A dinode directly lists the numbers of the first 12 blocks

– the dinode.addrs [0] block contains bytes 0 to 511 of the file
– . . .
– the dinode.addrs [i] block contains the bytes i * 512 to i * 512 + 511

• The indirection block contains the following block numbers

– the indirection block number ind is given in dinode.addrs [12]
– the ind [0] block contains bytes 12 * 512 to 12 * 512 + 511

• Note: since a block is 512 bytes and a block number is coded out of 4 characters, a file has a
maximum size of 12 + 512/4 blocks.

10.5.4 Adding a block to a file
• To add a new block to a dinode dino (function bmap () in fs.h)

1. Find a free block number in the table of free blocks \ (function balloc() in fs.h)
2. Mark the occupied block (put its bit 1 in the table)
3. Add the block number to the list of data blocks in dino

– this addition may require to allocate an indirection block

10.5.5 Directories
• A directory is a file of type T_DIR

• Contains an array associating names and numbers of dinodes

– inum: inode number
– name: file name

• Inode 1 is necessarily a directory: it is the root directory of the filesystem

• Note: dinode.nlink gives the number of times a dinode is referenced from a directory

=⇒ file deleted when nlink equals to 0.

10.5.6 From path to inode
• To find a dinode number from the path /e0/../en (see namex() in fs.c)

cur = 1
For i in [0 .. n]

Look for the association [inum, name] in the data blocks of
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the cur dinode such that name is ei
cur = inum

10.5.7 File creation and deletion
• To create the file f in the d directory (function create() in sysfile.c)

1. Find a free inum dinode by finding an inode whose type is 0 in the dinode array (ialloc
() in fs.h)

2. Add the association [inum, f] to d

• To delete the file f from the d directory (sys_unlink() function in sysfile.c)

1. Delete the entry corresponding to f in d
2. Decrement nlink from f and if nlink equals 0
3. Delete data blocks from file f
4. Remove the inode f (setting its type to 0)

10.6 xv6 I/O stack

10.6.1 Inode
• inode = memory cache of a dinode

– Enter the cache at open()

– Can be evicted from cache from close()

– Contains the fields of the dinode

– + fields to know which dinode the inode corresponds to

∗ Device number and dinode number

– + fields required when the dinode is used

∗ A lock to manage concurrent access
∗ A counter giving the number of processes using the inode to know when the inode

can be evicted from the cache

• Inode table = table which contains the inodes
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10.6.2 Main functions of inodes (1/3)
• struct inode* iget(int dev, int inum)

– Corresponds to open(): returns an inode associated with [dev, inum]

– Increments the inode usage counter (non-evictable)

– Do not lock the inode and do not read the inode from disk (optimization to avoid
disc playback when creates a file)

∗ inode.valid indicates whether the inode has been read from disk

• void ilock(struct inode* ip)

– Acquires a lock on the inode
– Read inode from disk if not already read

• void iunlock(struct inode* ip)

– Release the lock on the inode

10.6.3 Main functions of inodes (2/3)
• void itrunc(struct inode* ip)

– Free all the blocks in the file (size 0)

• void iupdate(struct inode* ip)

– Copy the inode to the disk dinode (technically, via the I/O cache)

10.6.4 Main functions of inodes (3/3)
• void iput(struct inode* ip)

– Corresponds to close ()

– Decreases the inode usage counter

– If cpt drops to 0, the inode can be evicted from the cache and

∗ If nlink is 0 (the inode is no longer referenced by a directory)

· Delete data blocks from inode (itrunc)
· Mark the inode as free (type = 0)

• Note: if you delete a file from a directory (unlink()) while the file is still in use (open) by
a process, the inode is not deleted: it will be when last close() when the reference counter
drops to 0.
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10.6.5 Open files
• Multiple processes can open the same file

– Each process has independent read / write permissions
– Each process has a read cursor, which is independent of that of the other processes

• A file structure opened by open () contains:

– A pointer to an inode
– Access permissions
– A reading cursor

10.6.6 File descriptors
• Each process has an ofile table of open files

– A descriptor d is an index in this table
– proc[i].ofile[d] points to an open file
– proc[i].ofile[d].ip points to inode

• Good to know

– During a fork(), the parent and the child share the open files
– So proc[parent].ofile[d] == proc[child].ofile[d]
– And so, if the father reads, the child read cursor changes
– Useful for setting up pipes

10.7 What you must remember
• A device driver is just a function (virtio_disk_rw() for example)

• Reads and writes are logged

– Ensures file system consistency in the event of a crash

• The kernel has an I/O cache

– Is in memory, managed by the kernel
– Allows to speed up I/O

• A file system separates

– The naming (directory) of the files (dinodes + data blocks)
– The metadata (dinode) of the data blocks

• A file descriptor is an index in the ofile table

– proc->ofile[i] is an open file that references an inode
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