
Architecture
François Trahay

1

Introduction
Why this lecture?

To understand what is happening in the “hardware” part of the execution stack
To write programs that are efficient on modern machines

2

Moore’s Law
1965 - 2005

Moore’s Law (1965): the number of transistors in microprocessors doubles every two years
The fineness of the processor engraving decreases
The clock frequency increases

⟹ Increased processor performance
Since 2005

The fineness of engraving continues to decrease (but less quickly)
The clock frequency no longer increases due to heat dissipation
Heat dissipation depends on the frequency, and the number of transistors
Multiple computing units per processor

3

Evolution of processors performance

Source

4

https://github.com/karlrupp/microprocessor-trend-data

Sequential processor
An instruction requires N steps

Fetch: load instruction from memory
Decode: identify the instruction
Execute: execution of the instruction
Writeback: storage of the result

Each step is processed by a processor circuit
Most circuits are not used at every stage → One instruction is executed every N cycles

5

Instruction pipeline
At each stage, several circuits are used

→ One instruction is executed at each cycle

Execution of instructions on a processor with pipeline

6

Micro architecture of a pipeline
Each stage of the pipeline is implemented by a set of logic gates
Execute step: one subcircuit per type of operation (functional unit)

Micro-architecture of a pipeline

7

Superscalar processors
Use of different functional units simultaneously
⟹ several instructions executed simultaneously!

Require to load and decode several instructions simultaneously

Micro-architecture of a superscalar processor
8

Superscalar processors throughput

9

Dependence between instructions

Limitations of the superscalar:
There should be no dependency between statements executed simultaneously.
Example of non-parallelizable instructions

Degree of parallelism of the instructions: Instruction Level Parallelism (ILP)
Instructions executed in parallel must use different functional units

a = b * c;

d = a + 1;

10

Branching
How to fill the pipeline when the instructions contain conditional jumps?

In case of a bad choice: the pipeline must be “emptied”
⟹ waste of time

 cmp a, 7 ; a > 7 ?

 ble L1

 mov c, b ; b = c

 br L2

L1: mov d, b ; b = d

L2: ...

11

Branch prediction
The processor implements a prediction algorithm
General idea:

For each conditional jump, store the previous results

0x12 loop:

 ...

0x50 inc eax

0x54 cmpl eax, 10000

0x5A jl loop

0x5C end_loop:

 ...

12

Vector instructions
Many applications run in Data Parallelism mode
Single Instruction, Multiple Data (SIMD): the same operation applied to a set of data

Example: image processing, scientific computing
Using vector instructions (MMX, SSE, AVX, …)
Instructions specific to a processor type
Process the same operation on multiple data at once

for(i=0; i<size; i++) {

 C[i] = A[i] * B[i];

}

for(i=0; i<size; i+= 8) {

 *pC = _mm_mul_ps(*pA, *pB);

 pA++; pB++; pC++;

}

13

Parallel Processing

14

Hyperthreading / SMT
Problem with superscalar / vector processors:

The application must have enough parallelism to exploit
Other applications may be waiting for the CPU

Simultaneous Multi-Threading (SMT, or Hyperthreading)
Modify a superscalar processor to run multiple threads
Duplicate some circuits
Share certain circuits (eg FPU) between processing units

15

Multi-core processors
Limited scalability of SMT
dispatcher is shared
FPU is shared

→ Duplicate all the circuits

16

Symmetric Multi-Processing (SMP)
Multiple processors sockets on a motherboard
The processors share the system bus
Processors share memory
Scalability problem: contention when accessing the bus

17

NUMA architectures
NUMA nodes connected by a fast network
Memory consistency between processors
Privileged access to the local
Access possible (with an additional cost) to memory banks located on other nodes

→ Non-Uniform Memory Architecture

18

Memory hierarchy

19

Memory wall
Until 2005: increase in CPU performance: 55 % / year
Since 2005: increase in the number of cores per processor
Increased memory performance: 10 % / year
The memory accesses which are now expensive: Memory Wall
Mechanisms are needed to improve memory performance

20

Cache memory
Memory access (RAM) are very expensive (approx. 60 ns - approx. 180 cycles)
To speed up memory access, let’s use a fast cache memory:

L1 cache: very small capacity (typically: 64 KiB), very fast (approx. 4 cycles)
L2 cache: small capacity (typical: 256 KiB), fast (approx. 10 cycles)
L3 cache: large capacity (typically: between 4 MiB and 30 MiB), slow (approx. 40 cycles)

Very expensive hard disk access (SWAP): approx. 40 ms (150 μs on an SSD disk)

21

Memory Management Unit (MMU)
Translates virtual memory addresses into
physical addresses
Look in the TLB (Translation Lookaside Buffer),
then in the page table
Once the physical address is found, request the
data from the cache / memory

22

Fully-associative caches

Cache = array with N entries
For each reference, search for Tag in the array

If found (cache hit) and Valid = 1: access to the cache line
Data
Otherwise (cache miss): RAM access

Problem: need to browse the whole table
→ Mainly used for small caches (ex: TLB)

23

Direct-mapped caches

Using the least significant bits of the address to find the
index of the entry in the cache
Comparison of the Tag (most significant bits) of the address
and the entry.

→ Direct access to the cache line
Warning: risk of collision
example: 0x12345678 and 0xbff72678

24

Set-associative caches

Index to access a set of K cache lines
Search for the Tag among the addresses of the set

→ K-way associative cache (in French: Cache associatif K-voies)

25

Cache consistency

What if 2 threads access the same cache line?
Concurrent read: replication in local caches
Concurrent write: need to invalidate data in other caches
Cache snooping: the cache sends a message that invalidates the others caches

26

Bibliography
Bryant, R. E., and D. R. O’Hallaron. 2003. Computer Systems: A Programmer’s Perspective. Prentice Hall.

Patterson, David A. 2011. Computer Architecture: A Quantitative Approach. Elsevier.
Patterson, David A, and John L Hennessy. 2013. Computer Organization and Design: The Hardware/Software

Interface. Newnes.

27

