
Virtual memory

François Trahay

1

Introduction

A process needs to be present in main memory to run

Central memory divided into two parts

The space reserved for the operating system

The space allocated to processes

Memory management concerns the process space

Memory capacities are increasing, but so are the requirements → Need for multiple memory levels

Fast memory (cache)

Central memory (RAM)

Auxiliary memory (disk)

Principle of inclusion to limit updates between different levels

2

Paging

3

Overview

The address space of each program is split into pages

Physical memory divided into page frames

Matching between some pages and page frames

4

Status of memory pages

The memory pages of a process can be

In main memory / in RAM (active pages)

Non-existent in memory (inactive pages never written)

In secondary memory / in the Swap (inactive pages that have already been written)

→ each process has a contiguous memory space to store its data

The paging mecanism

Translates virtual addresses to/from physical addresses

Loads the necessary pages (in case of page faults)

(Optionally) move active pages to secondary memory

5

Logical (or virtual) address

Address space is divided using the most significant bits

Logical address on k bits:

Page number: p bits

Offset in the page: d = (k - p) bits

→ 2p pages and each page contains 2k − p bytes

Page size

Usually 4 KiB (k-p = 12 bits, so p = 52 bits)

Huge pages: 2 MiB, 1 GiB, 512 GiB, or 256 TiB pages

Choice = compromise between various opposing criteria

Last page is half wasted

Small capacity memory : small pages

Scalability of the page management system

6

Page table

The correspondence between logical address and address physical is done with a page table that contains

Page frame number

Information bits (presence, permissions, upload timestamp …)

7

Implementation of a page table

On x86_64 or RISC-V, a page table = 4-levels tree

The physical address of a 512-entry root table is stored in the satp register (cr3 on x86 architectures)

Each entry in a table gives the address of the following table

virtual address decomposed into 4 indexes (n[0..3]) + 1 offset, then translated using:

uint64_t cur = %satp3; // cur = root table physical address

for(int i=0; i<3; i++)

 cur = ((uint64_t*)cur)[n[i]]; // physical memory access, next entry

return cur + offset; // add the offset

8

Translation Lookaside Buffer (TLB)

Problem: any access to information requires several memory accesses

Solution: use associative memories (fast access registers)

Principle

A number of registers are available

Logical page number Np compared to the content of each register

if found → gives the corresponding frame number Nc

Otherwise use the page table

9

User point of view

10

Memory space of a process

Composed of:

kernel space

the different sections of the

executed ELF file (.text, .data,

etc.)

the heap

the stack (one per thread)

shared libraries

11

Memory mapping

How to populate the memory space of a process?

For each ELF file to be loaded:

open the file with open

each ELF section is mapped in memory (with mmap) with the appropriate permissions

Results are visible in /proc/<pid>/maps

$ cat /proc/self/maps

5572f3023000-5572f3025000 r--p 00000000 08:01 21495815 /bin/cat

5572f3025000-5572f302a000 r-xp 00002000 08:01 21495815 /bin/cat

5572f302e000-5572f302f000 rw-p 0000a000 08:01 21495815 /bin/cat

5572f4266000-5572f4287000 rw-p 00000000 00:00 0 [heap]

7f33305b4000-7f3330899000 r--p 00000000 08:01 22283564 /usr/lib/locale/locale-archive

7f3330899000-7f33308bb000 r--p 00000000 08:01 29885233 /lib/x86_64-linux-gnu/libc-2.28.so

7f33308bb000-7f3330a03000 r-xp 00022000 08:01 29885233 /lib/x86_64-linux-gnu/libc-2.28.so

[...]

7f3330ab9000-7f3330aba000 rw-p 00000000 00:00 0

7ffe4190f000-7ffe41930000 rw-p 00000000 00:00 0 [stack]

7ffe419ca000-7ffe419cd000 r--p 00000000 00:00 0 [vvar]

7ffe419cd000-7ffe419cf000 r-xp 00000000 00:00 0 [vdso]

12

Memory allocation

void* malloc(size_t size)

Returns a pointer to an buffer of size bytes

void* realloc(void* ptr, size_t size)

Changes the size of a buffer previously allocated by malloc

void* calloc(size_t nmemb, size_t size)

Same as malloc, but memory is initialized to 0

void *aligned_alloc(size_t alignment, size_t size)

Same as malloc. The returned address is a multiple of alignment

void free(void* ptr)

Free an allocated buffer

13

Memory alignment

Memory alignment depends on the type of data

char (1-byte), short (2-bytes), int (4-bytes), …

A data structure may be larger than its content

A data structure can be packed with __attribute__((packed))

14

The libc point of view

How to request memory from the OS

void *sbrk(intptr_t increment)

increase the heap size by increment bytes

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t

offset)

map a file in memory

if flags contains MAP_ANON, does not map any file, but allocates an area filled with 0s

15

Memory allocation strategies

16

Non-Uniform Memory Access

Several interconnected memory controllers

Memory consistency between processors

Privileged access to the local memory bank

Possible access (with an additional cost) to distant memory banks

→ Non-Uniform Memory Access → On which memory bank to allocate data?

17

First touch allocation strategy

Linux default lazy allocation strategy

Allocation of a memory page on the local node when first accessed

Assumption: the first thread to use a page will probably will use it in the future

 double *array = malloc(sizeof(double)*N);

 for(int i=0; i<N; i++) {

 array[i] = something(i);

 }

 #pragma omp parallel for

 for(int i=0; i<N; i++) {

 double value = array[i];

 /* ... */

 }

18

Interleaved allocation strategy

Pages are allocated on the different nodes in a round-robin fashion

Allows load balancing between NUMA nodes

void *numa_alloc_interleaved(size_t size)

 double *array =

 numa_alloc_interleaved(sizeof(double)*N);

 for(int i=0; i<N; i++) {

 array[i] = something(i);

 }

 #pragma omp parallel for

 for(int i=0; i<N; i++) {

 double value = array[i];

 /* ... */

 }

19

mbind

long mbind(void *addr, unsigned long len, int mode, const unsigned long

*nodemask, unsigned long maxnode, unsigned flags)

Place a set of memory pages on a (set of) NUMA node → allows manual placement of memory pages

 double *array = malloc(sizeof(double)*N);

 mbind(&array[0], N/4*sizeof(double),

MPOL_BIND, &nodemask, maxnode,

MPOL_MF_MOVE);

 #pragma omp parallel for

 for(int i=0; i<N; i++) {

 double value = array[i];

 /* ... */

 }

20

