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Introduction

A process needs to be present in main memory to run
Central memory divided into two parts
» The space reserved for the operating system
= The space allocated to processes
Memory management concerns the process space
Memory capacities are increasing, but so are the requirements > Need for multiple memory levels
» Fast memory (cache)
» Central memory (RAM)
= Auxiliary memory (disk)
Principle of inclusion to limit updates between different levels



Paging



Overview
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e The address space of each program is split into pages
* Physical memory divided into page frames
e Matching between some pages and page frames



Status of memory pages

e The memory pages of a process can be
= In main memory /in RAM (active pages)
= Non-existent in memory (inactive pages never written)
= |n secondary memory /in the Swap (inactive pages that have already been written)
> each process has a contiguous memory space to store its data
e The paging mecanism
= Translates virtual addresses to/from physical addresses
= Loads the necessary pages (in case of page faults)
= (Optionally) move active pages to secondary memory



Logical (or virtual) address

o Address space is divided using the most significant bits
= Logical address on K bits:
o Page number: p bits
o Offsetinthepage:d = (k - p) bits
> 2P pages and each page contains 2X ~P bytes
e Page size
= Usually 4 KiB (k-p = 12 bits, so p = 52 bits)
= Huge pages: 2 MiB, 1 GiB, 512 GiB, or 256 TiB pages
e Choice = compromise between various opposing criteria
= Last page is half wasted
= Small capacity memory : small pages
= Scalability of the page management system



Page table

e The correspondence between logical address and address physical is done with a page table that contains
= Page frame number

= Information bits (presence, permissions, upload timestamp ...)
logical address

l. page | offset

RAM
page table

information | physical page ' e —
0 physical address o
=
1 p. page| offset f_ma

page hit
. p. page swap
Y
N
page fault




Implementation on a 64-bit pentium

Page table = 4-levels tree
= The physical address of a 512-entry root table is stored in the satp register (Cr3 on x86 architectures)
= Eachentryin atable gives the address of the following table
= (virt?) decomposed into 4indexes (N[0. .3]) + 1 offset, then translated using:

uint64 t cur = %satp3; // cur = root table physical address
for(int i=0; i<3; i++)

cur = ((uint64 t*)cur)[n[ill; // physical memory access, next entry
return cur + offset; // add the offset
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Translation Lookaside Buffer (TLB)

» Problem: any access to information requires several memory accesses
» Solution: use associative memories (fast access registers)
e Principle

= A number of registers are available

= Logical page number N, compared to the content of each register

= if found > gives the corresponding frame number N,

= Otherwise use the page table
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User point of view



Memory space of a process
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Memory mapping

e How to populate the memory space of a process?
= Foreach ELF file to be loaded:
o open the file with open
o each ELF section is mapped in memory (with mmap) with the appropriate permissions
o Results are visiblein /proc/<pid>/maps

$ cat /proc/self/maps
557213023000-5572f3025000 r--p 00000000 08:01 21495815 /bin/cat

5572f3025000-5572f302a000 r-xp 00002000 08:01 21495815 /bin/cat

55721302e000-5572f302f000 rw-p 00002000 08:01 21495815 /bin/cat

557214266000-5572f4287000 rw-p 00000000 00:00 0 [heap]

7133305b4000-713330899000 r--p 00000000 08:01 22283564  /usr/lib/locale/locale-archive
713330899000-7133308bb000O r--p 00000000 08:01 29885233  /1ib/x86 64-linux-gnu/libc-2.28.so0
7133308bb000-713330a03000 r-xp 00022000 08:01 29885233  /1lib/x86 64-linux-gnu/libc-2.28.so0
[...]

7f3330ab9000-7f3330aba®00 rw-p 00000000 00:00

0
7ffe4190f000-7ffe41930000 rw-p 00000000 00:00 O [stack]
7ffe419cab00-7ffe419cd000 r--p 00000000 00:00 O [vvar]
7ffe419cd000-7ffe419cf000 r-xp 00000000 00:00 O [vdsol



Memory allocation

void* malloc(size t size)
» Returns a pointer to an bufferof size bytes
void* realloc(void* ptr, size t size)
= Changes the size of a buffer previously allocated by malloc
void* calloc(size t nmemb, size t size)
» Sameasmalloc, but memoryisinitialized to 0
void *aligned alloc( size t alignment, size t size )
= Sameasmalloc. Thereturned address is a multiple of alignment
void free(void* ptr)
» Free an allocated buffer



Memory alighment

e Memory alignment depends on the type of data
= char (1-byte), short (2-bytes), int (4-bytes), ...

e Adata structure may be larger than its content
str-uct plop {
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e Adatastructure can be packed with attribute ((packed))
struct plop { struct plop

int a; . '
char b; LTI T
intc; —a b5 <
}__attribute_ ((packed));



The libc point of view

» How to request memory from the OS
= vold *sbrk(intptr t increment)
o increase the heap size by increment bytes
= void *mmap(void *addr, size t length, int prot, int flags, int fd, off t
offset)
o map a file in memory
o if flags contains MAP_ANON, does not map any file, but allocates an area filled with 0s



Memory allocation strategies



Non-Uniform Memory Access

e Several interconnected memory controllers

e Memory consistency between processors

* Privileged access to the local memory bank
» Possible access (with an additional cost) to distant memory banks

> Non-Uniform Memory Access - On which memory bank to allocate data? vem




First touch allocation strategy

e Linux default lazy allocation strategy
e Allocation of a memory page on the local node when first accessed
e Assumption: the first thread to use a page will probably will use it in the future

double *array = malloc(sizeof(double)*N);

for(int i=0; i<N; i++) {
array[i] = something(i);

#pragma omp parallel for

for(int i=0; i<N; i++) {
double value = array[i];
/* ... %/

}




Interleaved allocation strategy

e Pages are allocated on the different nodes in a round-robin fashion
e Allows load balancing between NUMA nodes
e« void *numa_alloc interleaved(size t size)

double *array =
numa_alloc interleaved(sizeof(double)*N);

for(int i=0; i<N; i++) {
array[i] = something(i);

}

#pragma omp parallel for

for(int i=0; i<N; i++) {
double value = arrayl[i];
VA

}




mbind

e long mbind(void *addr, unsigned long len, int mode, const unsigned long
*nodemask, unsigned long maxnode, unsigned flags)
» Place a set of memory pages on a (set of) NUMA node - allows manual placement of memory pages

double *array = malloc(sizeof(double)*N);
mbind(&array[0], N/4*sizeof(double),
MPOL_BIND, &nodemask, maxnode,
MPOL_MF_MOVE) ;

#pragma omp parallel for

for(int i=0; i<N; i++) {
double value = array[i];
/* ... */

}




