Synchronization

Francgois Trahay

Introduction

e Obijectives of this lecture:
= How are synchronization primitives implemented?
= How to do without locks?

Atomic operations

Motivation

e By default, an instruction modifying a variable is non-atomic
e example: X++ gives:
» register = load(x)
= register ++
= X = store (register)
> Problem if the variable is modified by a other thread simultaneously

Can’t we just use volatile?

e Tells the compiler that the variable can change from one access to another:
= modification by another thread
= modification by a signal handler

e Butvolatile does not ensure atomicity

Atomic operations

e C11 provides a set of atomic operations, including
atomic flag test and set

atomic compare exchange strong
atomic fetch add

atomic thread fence

Test and set

e Bool atomic flag test and set(volatile atomic flag* obj)
= sets a flag and returns its previous value
Performs atomically:

int atomic flag test and set(int* flag) {
int old = *flag;
*flag = 1;
return old;

}

Implementing a lock:

void lock(int* lock) {
while(atomic flag test and set(lock) == 1) ;
}

Compare And Swap (CAS)

« Bool atomic compare exchange strong(volatile A* obj, C* expected, C
desired);

= compares *obj and *expected

= if equal, copy desiredinto *obj and return true

= else, copy the value of *obj into *expected and return false
Performs atomically:

bool CAS(int* obj, int* expected, int desired) {
if(*obj != *expected) {
*expected = *obj;
return false;
} else {
*obj = desired;
return true;
}
}

Fetch and Add

e C atomic fetch add(volatile A* obj, M arg);
= replace obj witharg+obj
= return the old value of 0bj

e Performs atomically:

int fetch and add(int* obj, int value) {
int old = *obj;
*obj = old+value;
return old;

}

Memory Fence (Barriére mémoire)

e C atomic thread fence(memory order order);
= performs a memory synchronization
= ensures that all past memory operations are visible by all threads according to the memory model chosen
(see C11 memory model)

https://en.cppreference.com/w/c/atomic/memory_order

Synchronization primitives

* Properties to consider when choosing a synchronization primitive
= Reactivity: time spent between the release of a lock and the unblocking of a thread waiting for this lock
= Contention: memory traffic generated by threads waiting for a lock
= Equity and risk of famine: if several threads are waiting for a lock, do they all have the same probability of
acquire it? Are some threads likely to wait indefinitely?

Busy-waiting synchronization

int pthread spin lock(pthread spinlock t *lock);

» tests the value of the lock until it becomes free, then acquires the lock
int pthread spin unlock(pthread spinlock t *lock);
Benefits

= Simple to implement (with test and set)

= Reactivity
Disadvantages

= Consumes CPU while waiting

= Consumes memory bandwidth while waiting

Futex

e fast Userspace Mutex
» System call allowing to build synchronization mechanisms in userland
= Allows waiting without monopolizing the CPU
» Afutexis made up of:
o avalue
o awaiting list
= Available operations (among others)
o WAIT(int *addr, int value)
o while(*addr == value) { sleep();}: addthe currentthread to the waiting list
o WAKE(int *addr, int value, int num)
o *addr = value: wake up numthreads waiting on addr

Implementing a mutex using a futex

e mutex: an integer with two possible values: 1 (unlocked), or O (locked)
e mutex lock(m):

= Test and unset the mutex

= if mutexis 0, call FUTEX WAIT
o mutex unlock(m):

= Test and set the mutex

= call FUTEX WAKE to wake up a thread from the waiting list

Implementing a monitor using a futex

e condition: a counter

struct cond {
int cpt;
}

void cond wait(cond t *c, pthread mutex t *m) {
int value = atomic_load(&c->value);
pthread mutex unlock(m);
futex(&c->value, FUTEX WAIT, value);
pthread mutex lock(m);

}

void cond signal(cond t *c) {
atomic_fetch_add(&c->value, 1);
futex(&c->value, FUTEX WAKE, 0);
}

Using synchronization

e Classic problems:
= deadlocks
= lock granularity
= scalability

Deadlock

e Situation such that at least two processes are each waiting for a non-shareable resource already allocated to the
other
» Necessary and sufficient conditions (Coffman, 1971 (Coffman, Elphick, and Shoshani 1971))
1. Resources accessed under mutual exclusion (non-shareable resources)
2. Waiting processes (processes keep resources that are acquired)
3. Non-preemption of resources
4, Circular chain of blocked processes
e Strategies:
= Prevention: acquisition of mutexes in the same order
= Deadlock detection and resolution (eg. with pthread mutex timedlock)

Lock granularity

e Coarse grain locking
= Alock protects a large portion of the program
= Advantage: easy to implement
= Disadvantage: reduces parallelism
e Fine grain locking
= Each lock protects a small portion of the program
= Advantage: possibility of using various resources in parallel
= Disadvantages:
o Complex to implement without bug (eg. deadlocks, memory corruption)
o Overhead (locking comes at a cost)

Scalability of a parallel system

» Scalability = ability to reduce execution time when adding processing units
e Sequential parts of a program reduce the scalability of a program (Amdhal’s law (Amdahl 1967))
 In a parallel program, waiting for a lock introduced sequentiality -> Locks can interfere with scalability

Bibliography

Amdahl, Gene M. 1967. “Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities.” In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, 483-85. ACM.
Coffman, Edward G, Melanie Elphick, and Arie Shoshani. 1971. “System Deadlocks.” ACM Computing Surveys
(CSUR) 3 (2): 67-T8.

