
Concurrent programming
François Trahay

1

Introduction
Content of this lecture

discovering existing synchronization mechanisms
inter-process synchronization
intra-process synchronization

studying classic synchronization patterns

2

Inter-process synchronization
IPC: Inter Process Communication

based on IPC objects in the OS
usage: usually via an entry in the filesystem
provides data persistence

3

Pipes
Special files managed in FIFO

Anonymous pipes
int pipe(int pipefd[2]);

creates a pipe accessible by the current process
also accessible to future child processes
pipefd[0] for reading, pipefd[1] for writing

Named pipes
int mkfifo(const char *pathname, mode_t mode);

creates an entry in the filesystem accessible by any process
Use (almost) like a “regular” file

blocking reading
lseek is impossible

4

Shared memory
Allows you to share certain memory pages between several processes

Creating a zero-byte shared memory segment:
int shm_open(const char *name, int oflag, mode_t mode);

name is a key of the form /key
Changing the segment size:

int ftruncate(int fd, off_t length);

Mapping the segment into memory:
void *mmap(void *addr, size_t length, int prot, int flags, int fd,

off_t offset);

flags must contain MAP_SHARED

5

Semaphore
Object consisting of a value and a waiting queue
Creating a semaphore:

named semaphore: sem_t *sem_open(const char *name, int oflag, mode_t
mode, unsigned int value);

name is a key of the form /key
anonymous semaphore: int sem_init(sem_t *sem, int pshared, unsigned int
value);

if pshared != 0, ca be used by several processes (using a shared memory segment)
Usage:

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

int sem_post(sem_t *sem);

6

Intra-process synchronization
Based on shared objects in memory
Possible use of IPC

7

Mutex
Ensures mutual exclusion
Type: pthread_mutex_t
Initialisation:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(ptread_mutex_t *m, const pthread_mutexattr_t

*attr);

Usage:
int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Destroying a mutex:
int pthread_mutex_destroy(pthread_mutex_t *mutex);

8

Monitors
Allows you to wait for a condition to occur
Consists of a mutex and a condition
Example:

pthread_mutex_lock(&l);

 while(!condition) {

 pthread_cond_wait(&c, &l);

 }

 process_data();

pthread_mutex_unlock(&l);

pthread_mutex_lock(&l);

 produce_data();

 pthread_cond_signal(&c);

pthread_mutex_unlock(&l);

9

Barrier
Allows you to wait for a set of threads to reach rendez-vous point

Initialisation:
int pthread_barrier_init(pthread_barrier_t *barrier, const

pthread_barrierattr_t *restrict attr, unsigned count);

Waiting:
int pthread_barrier_wait(pthread_barrier_t *barrier);

block until count threads reach pthread_barrier_wait
unblock all count threads

10

Read-Write lock

Type: pthread_rwlock_t
int pthread_rwlock_rdlock(pthread_rwlock_t* lock)

Lock in read-mode
Possibility of several concurrent readers

int pthread_rwlock_wrlock(pthread_rwlock_t* lock)

Lock in write-mode
Mutual exclusion with other writers and readers

int pthread_rwlock_unlock(pthread_rwlock_t* lock)

Release the lock ::: notes :::

11

Classic synchronization patterns
Goals

Being able to identify classic patterns
Implement these patterns with proven methods

12

Mutual exclusion synchronization pattern
Allows concurrent access to a shared resource
Principle:

Mutex m initialized
Primitive mutex_lock(m) at the start of the critical section
Primitive mutex_unlock(m) at the end of the critical section
Example:

mutex m initialized

 Prog1

mutex_lock(m)

 x=read (account)

 x = x + 10

 write (account=x)

mutex_unlock(m)

 Prog2

mutex_lock(m)

 x=read (account)

 x = x - 100

 write(account=x)

mutex_unlock(m)

13

Cohort synchronization pattern
Allows the cooperation of a group of a given maximum size
Principle:

A counter initialized to N, and a monitor m to protect the counter
Decrement the counter at the start when needing a resource
Increment the counter at the end when releasing the resource

 Prog Vehicule

...

mutex_lock(m);

while(cpt == 0){ cond_wait(m); }

cpt--;

mutex_unlock(m);

|...

mutex_lock(m);

cpt++;

cond_signal(m);

mutex_unlock(m);

14

Producer / Consumer synchronization pattern
One or more threads produce data
One or more threads consume the data produced
Communication via a N blocks buffer

Executing Produc: produces info0

Executing Produc: produces info1

Executing Conso: consumes info0

Executing Produc: produces info2

15

Reader / Writer pattern
Allow a coherent competition between two types of process:

the “readers” can simultaneously access the resource
the “writers” access the resource in mutual exclusion with other readers and writers

16

Implementation of a Reader / Writer synchronization pattern

Use a pthread_rwlock_t
int pthread_rwlock_rdlock(pthread_rwlock_t* lock) to protect read operations
int pthread_rwlock_wrlock(pthread_rwlock_t* lock) to protect write operations
int pthread_rwlock_unlock(pthread_rwlock_t* lock) to release the lock

17

