Threads

Francois Trahay

TELECOM @ INSTITUT
E'O‘% POLYTECHNIQUE
Y& DE PARIS

AT

Execution context of a process

e Context: execution context + kernel context
e Address space: code, data and stack

0x0000008000000000
Process context: Stack fooei:.;7 Functions context
g b= Oxcef
Execution context | ‘lﬁ_ SP (stack pointer)
. as=
Data registers {a0=147, a1=0x66, ...}
Stack pointer {sp=0x7fffffffd678}
Program counter {pc=0x7fffff7e8f0d0 it Il Shared libraries
(0] 195 libfoo.so
Kernel context vl
. ©
Virt. Mem. structures a
Descriptor table 5
brk pointer 4 A | brk
II—HEIIO worldho Dynamic allocation
Heap (mallo, ...)
.bss Unitialized variables
.data Initialized variables
RECED PC (program counter)
text I, <[Instructions
: 0x0000000000000000

Duplicating a process

e Fork creates a new process and duplicates
» Context: execution context + kernel context
= except for the a0 register (where the return value is stored)
o On x86_64 architecture, this is the register rax
» Address space: code, data and stack

Process 1 context:

Execution cFJntext Stack W Stack W
Data reg.lsters a gK66, ...} b=l0xcef b= Oxcef
Stack pointer {sp™ d678) | bar_ SP I B
Program counter {rip=0x7ffff7esfodo} =12

Kernel context < o

. 0 wn

—
2 [Libs : < [Libs "

brk pointer o libfoo.so "J]-) libfoo.so
s ot
o [
I o
wn wn
b @

Process 2 context: % a

Execution conte brk
Data registes, 3 ?He"o — / 4
Stack pointer {8 d678) elloiorid\ O UFERTEED]
Program counter {rip=Ox7fff7esfodo} Heap Heap

Kernel context .bss bss
Virt. Mem. structures
Descriptor table .data .data
brk pointer T e A — "o

ext ecall text el

Execution flows

Execution flow ! = Resources
= Execution flow (or thread) : execution context + stack
= Resources: code, data, kernel context

Thread
oy 0x0000008000000000
Stack b= Oxcef
)
— SP (stack pointer)
Execution context
Data registers {a0=147, a1=0x66, ...} Libs [l2ee Shared libraries
Stack pointer {sp=0x7fffffffd678} g Loy
Program counter {pc=0x7fffff7e8f0d0 g
0w
o
brk
3 4 |
IM Dynamic allocation
Heap (mallog, ...)
Kernel context bss Unitialized variables
Virt. Mem. structures .data Initialized variables
Descriptor table toxt 7o L P (program counten
. : 0x0000000000000000
brk pointer

Multithreaded process

e Several execution flows
e Shared resources

Thread 1

SP (stack pointer) —

Execution context 1
Data registers {a0=147, a1=0x66, ...}
Stack pointer {sp=0x7fffffffd678}
Program counter {pc=0x7fffff7e8f0d0

Kernel context
Virt. Mem. structures
Descriptor table
brk pointer

0x0000008000000000
Stack 1
Thread 2
P 1
=564
Stack 2 Stack 1 &
n=12812
SP (stack pointer)
s Execution context 2
o |Hbs ooss | e Data registers {a0=0x66, a1=0x13, ..}
8 Stack pointer {sp=0x7fffffffdéb0
o Program counter {pc=0x7fffff7e17238
2
3 brk
> A
Hello worldho Dynamic allocation
Heap (malloc, ..)
.bss Unitialized variables
.data Initialized variables
T DT C \ter)
ot Ra— L PCiprogram couner

0x0000000000000000

Creating a Pthread

« int pthread create(pthread t *thread, const pthread attr t *attr, void *
(*start routine) (void *), void *arg);
= attr (in): attributes of the thread to be created
= start routine (in): function to be executed once the thread is created
= arg (in): parameter to pass to the function
» thread (out): identifier of the created thread

Other Pthread functions

e int pthread exit(void* retval);
= Terminates the current thread with the return value retval

e int pthread join(pthread t tid, void **retval);
= Wait for the tid thread to terminate and get its return value —

Sharing data

e The memory space is shared between the threads, in particular
= global variables
= static local variables
= the kernel context (file descriptors, streams, signals, etc.)
e Some other resources are not shared
= |ocal variables

Thread-safe source code

» thread-safe source code: gives a correct result when executed simultaneously by multiple threads:
= No call to non thread-safe code
= Protect access to shared data

Reentrant source code

e Reentrant source code: code whose result does not depend on a previous state
= Do not maintain a persistent state between calls
» example of a non-reentrant function: fread depends on the position of the stream cursor

TLS - Thread-Local Storage

e Global variable (or static local) specific to each thread
= Example: errno
= Declaring a TLS variable
o inCll: Thread local int variable = 0;

Synchronization

» Guarantee data consistency
= Simultaneous access to a shared read / write variable
o X++ is not atomic (consisting of Load, update, store)
= Simultaneous access to a set of shared variables
o example: afunction swap(a, b){ tmp=a; a=b; b=tmp; }
e Several synchronization mechanisms exist
= Mutex
= Atomic Instructions
= Conditions, semaphores, etc. (see Lecture~#3)

Mutex

Type: pthread mutex t
Initialisation:
= pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
= int pthread mutex init(ptread mutex t *m, const pthread mutexattr t
*attr);
Usage:
= int pthread mutex lock(pthread mutex t *mutex));
= int pthread mutex trylock(pthread mutex t *mutex);
= int pthread mutex unlock(pthread mutex t *mutex);
Terminaison:
= int pthread mutex destroy(pthread mutex t *mutex);

Atomic operations

e QOperation executed atomically
e Cl1 defines a set of functions that perform atomic operations

= C atomic fetch add(volatile A *object, M operand);

= Bool atomic flag test and set(volatile atomic flag *object);
e (C11 defines atomic types

= operations on these types are atomic

= declaration: Atomic int var; or Atomic(int) var;

