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Execution context of a process

e Context: execution context + kernel context
e Address space: code, data and stack
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Duplicating a process

e Fork creates a new process and duplicates
» Context: execution context + kernel context
= except for the a0 register (where the return value is stored)
o On x86_64 architecture, this is the register rax
» Address space: code, data and stack
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Execution flows

Execution flow ! = Resources
= Execution flow (or thread) : execution context + stack
= Resources: code, data, kernel context
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Multithreaded process

e Several execution flows
e Shared resources
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Creating a Pthread

« int pthread create(pthread t *thread, const pthread attr t *attr, void *
(*start routine) (void *), void *arg);
= attr (in): attributes of the thread to be created
= start routine (in): function to be executed once the thread is created
= arg (in): parameter to pass to the function
» thread (out): identifier of the created thread



Other Pthread functions

e int pthread exit(void* retval);
= Terminates the current thread with the return value retval

e int pthread join(pthread t tid, void **retval);
= Wait for the tid thread to terminate and get its return value —



Sharing data

e The memory space is shared between the threads, in particular
= global variables
= static local variables
= the kernel context (file descriptors, streams, signals, etc.)
e Some other resources are not shared
= |ocal variables



Thread-safe source code

» thread-safe source code: gives a correct result when executed simultaneously by multiple threads:
= No call to non thread-safe code
= Protect access to shared data



Reentrant source code

e Reentrant source code: code whose result does not depend on a previous state
= Do not maintain a persistent state between calls
» example of a non-reentrant function: fread depends on the position of the stream cursor



TLS - Thread-Local Storage

e Global variable (or static local) specific to each thread
= Example: errno
= Declaring a TLS variable
o inCll: Thread local int variable = 0;



Synchronization

» Guarantee data consistency
= Simultaneous access to a shared read / write variable
o X++ is not atomic (consisting of Load, update, store)
= Simultaneous access to a set of shared variables
o example: afunction swap(a, b){ tmp=a; a=b; b=tmp; }
e Several synchronization mechanisms exist
= Mutex
= Atomic Instructions
= Conditions, semaphores, etc. (see Lecture~#3)



Mutex

Type: pthread mutex t
Initialisation:
= pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
= int pthread mutex init(ptread mutex t *m, const pthread mutexattr t
*attr);
Usage:
= int pthread mutex lock(pthread mutex t *mutex));
= int pthread mutex trylock(pthread mutex t *mutex);
= int pthread mutex unlock(pthread mutex t *mutex);
Terminaison:
= int pthread mutex destroy(pthread mutex t *mutex);



Atomic operations

e QOperation executed atomically
e Cl1 defines a set of functions that perform atomic operations

= C atomic fetch add(volatile A *object, M operand);

= Bool atomic flag test and set(volatile atomic flag *object);
e (C11 defines atomic types

= operations on these types are atomic

= declaration: Atomic int var; or Atomic(int) var;



