The *-PaaS API specification
\ersion 1.5

Telecom SudParis, Computer Science Department

TELECOM
SudParis

4 4 |

M\ EAS
=2 CLOUDS

Table of contents

A
B.
C.

E.

F.

INEFOTUCTION ...ttt b e sttt et b e bt s b s b e st et et e e et enesbessesbeseens 3
OVErVIEW 0N the *-PaaS APL.....c.oiiiiiieiresee ettt 3
The Environment Manager RESOUICEocuveveriieeeiecteeeesteeeetesreestestesteetesteesse e eseessesseesaessesseens 5
ENVIrONMENt MANITESTeoieeeeeeeeee ettt ettt sae e e e s teeneensesneenes 5
ENVIrONMENT AESCIIPTIONveiiiieiiitestet ettt sttt 5
Environment management MEthOOScoueiririrerirereeee e 7
The Application Manager RESOUICEcceiveeierieeteeiesteeeesteeeetesreessestesreesesreessessesseessessesssessessenns 9
APPHCALION MANITESE ...ttt s re e e s teesa et e sreensesreeneas 9
WA o] o] FTor= Vi Tl g I L=t ol 01 o] o [PPSR 11
Application management MEtNOUScoeoverieieirirrerereeee et 12
(070 1011010 A T=] £ (0] £ ORI 16
LINK ETBMEBNTS. ...eetieteeteeee ettt st sttt sttt e s b e st et e et e st esessesaessentens 16

Annex A: Application and Environment Management OPerations...........ccceeceveeeeveseeveesieeeesseseeennns 17

A. Introduction
This document provides a description of the *-PaaS API based on REST/XML. This API is designed
to provide an abstraction layer and a middleware for existing PaaS solutions to manage applications
and environments in a generic fashion (Figure 1). To define a new connection between a novel PaaS
and developer /application, one has simply to add its specific implementation.

. Create the environment

. Update the environment

Cloud Foundry
implementation

. Create the application

. Update the application

. Deploy the application

*_PaaS API

Openshift
implementation

. Start the application

. Stop the application

Other

Un-deploy the application -
@—y—owren Paas solutions

implementations

. Delete the application

Figure 1 : Overview

Two *-PaaS APl implementations are available (V 0.1): a Cloud Foundry implementation (CF-PaaS)
and an OpenShift implementation (OS-PaaS). Both implementations are available at:
http://gitorious.ow2.org/ow2-compatibleone/coaps/ and a user guide for CF-PaaS is available at:
http://www-inf.it-sudparis.eu/~sellami/starPaaS/PaaSAP1-UserGuide.pdf.*

B. Overview on the *-PaaS API

*-PaaS API exposes two main resources: RestApplicationManager and RestEnvironmentManager.
RestApplicationManager offers PaaS application management methods (See Figure 2). By
“application” we mean any computer software or program that can be deployed over a PaaS.
Application source archives should be provided by the developer in a bundled format (i.e. war, ear,
zip, etc.) or extracted format (i.e. a local folder with the different files and dependencies, distant URL,
etc.).

! Both implementations and the user guide use an old version of the specification and some inconsistencies
with the current specification can be found.

http://gitorious.ow2.org/ow2-compatibleone/coaps/
http://www-inf.it-sudparis.eu/~sellami/starPaaS/PaaSAPI-UserGuide.pdf

lapp

— |GET-FindApplications()
POST-CreateApplication()

lapp/{appld}
I~ |GET-DescribeApplication()
DELETE-DestroyApplication()

lapp/delete
DELETE-DestroyApplications()

lapp/{appld}/update
POST-UpdateApplication()

«interface»
Resource
+GET/() <} lapp/{appld}/action/deploy/env/{envid}
+PUT() POST-DeployApplication()
+POSTY()
+DELETE()

lapp/{appld}/action/undeploy/env/{envid}
POST-UndeployApplication()

lapp/{appld}/start
POST-StartApplication()

lapp/{appld}/stop
POST-StopApplication()

lapp/{appld}/restart
POST-RestartApplication()

Figure 2 RestApplicationManager

RestEnvironmentManager offers PaaS environment management methods (See Figure 3). A PaaS
environment represents a set of “’settings’’ needed to host and run an application in this PaaS: i.e. the
needed runtime (java 7, java 6, ruby, etc.), the needed frameworks/containers (spring, tomcat, ruby,
etc.) and eventually needed services (databases, messaging, etc.).

lenvironment

[|GET-FindEnvironments()
POST-CreateEnvironment()

lenvironment/{envid}

GET-DescribeEnvironment()

- DELETE-DestroyEnvironment()
«interface»
Resource
+GET() 4 lenvironment/info
+PUT() GET-Getlnformation()
+POST()
+DELETE()

lenvironment/{envid}/update
POST-UpdateEnvironment()

lenvironment/{envid}/app
GET-GetDeployedApplications()

Figure 3 RestEnvironmentManager

To deploy an application and run it through *-PaaS API, one should follow the basic usage scenario
illustrated in Figure 4.

Create Create Deploy Start
Environment Application Application Application

Figure 4 an application deployment scenario

C. The Environment Manager Resource
In this section, we introduce the environment manager resource, its different child resources and their
associated methods. We start this section by providing examples of an environment manifest (required
as input by some of the REST methods of the environment manager resource) and of an environment
description (returned as response by some of the REST methods of the environment manager
resource).

Environment manifest

The createEnvironment and updateEnvironment operations require as input an environment manifest.
This manifest allows developers to specify the different characteristics of the application’s
environment using an environment template (see Figure 5). Each environment template is composed
by a set of PaaS resource nodes and PaaS relations to link these nodes. PaaS nodes can be container
type, database type or router type while relations between them can be a binding between a container
node and a database node or between two containers node through a router node for example.

Note: the environment manifest used in this document is given as an example. While
implementing our API you can specify your own manifests.

/\ A | content_type : string
’. A | name : string
[E | paas_node : <None>
(%] g . R
(A | version : string
- . 8 gapas
"E w1 ﬂ paas_configuration_template A | provider : string
'] E | paas_relation : string
w1 [E] paas_environment (A] name : string
(A| description : string
(A | name : string
(A '] description : string
(A | provider : string

(A | memory : integer

Figure 5 schema of a possible environment manifest

Environment description
Some of the environment management operations return as response an XML environment descriptor.
The XML format of this descriptor is specific for the *-PaaS APl implementation. In the following, we

provide as an example the XML schema for the environment descriptor specific to a CloudFoundry
implementation of the *-PaaS API (see Figure 6).

Note: the environment description used in this document is given as an example. While

implementing our API you can specify your proper environment description.

(CT) environment

= . = 01 [E] key : string
[E | staging o2 i [E] entry £ - :
o i] value : string
"E 0= 'l] serviceNames : string
(A label :string
[E] t t [E] linksList off ;- [E]unk :<None> (A | action : string
(A] href :string
@ envid : string

/\ A | envName : string
/\ A | envDesc : string

/\ A | memory : integer

Figure 6 XML schema of a possible environment description

In Table 1, we provide the semantics of the different elements in the environment descriptor presented
in Figure 6 and provide the corresponding element in the environment manifest presented in Figure 5.

Element of the environment | Description Corresponding element
descriptor in the environment
manifest
LE staging This element describes the frameworks, | The <paas_node>

environments and eventual commands offered by
the environment.

elements with
container as
content_type value.

I] serviceNames

This element defines the services (database,
messaging pool ...) associated to the environment.

The <paas_node>
elements with
database as
content_type for
persistent values,
container for hosting
applications or router
for formatted
messages between

Paas nodes
LE TinksList The set of links associated to the environment (see | --
Section F). These links are automatically
generated.
(A] envid An automatically generated identifier for the | --
environment.
(AT envName The environment’s name. (AT name defined in
<paas_environment>
(A envDesc An optional textual description of the | CAJ description
environment. defined in
<paas_environment>
(A] memory The physical memory that is allocated to the @memory defined

application expressed in Megabytes.

in <paas_environment>

Table 1 elements and attributes of the environment description

Environment management methods
e Create Environment

This method creates a new environment using an environment descriptor. An environment specifies
the needed frameworks, runtimes containers and/or services required by a given application.

REST method POST

Resource identifier /environment

Input parameter An XML environment manifest

Response An XML environment descriptor. This descriptor contains, among other
information, the created environment’s ID.

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

Example using CURL

Request

curl =X Post —d@EnvironmentDescriptor.xml® —H “Content-Type: application/xml”
http://hostname:port/CF-api/environment®

Response
Return code: 200 OK

Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environment envld="1" envName="JavaWebEnv" envDesc="JavaWebApplicationsEnv">
<staging>
<entry>
<key>command</key>
<value>no</value>
</entry>
<entry>
<key>runtime</key>
<value>java</value>
</entry>
<entry>
<key>framework</key>
<value>java_web</value>
</entry>
</staging>
<serviceNames>mysgl</serviceNames>
<linksList>
<link label="destroyEnvironment()" action="DELETE" href="http://localhost:8080/CF-api/rest/environment/1"/>
<link label="getEnvironment()" action="GET" href="http://localhost:8080/CF-api/rest/environment/1"/>
</linksList>
</environment>

e Update Environment

This method updates an existing environment. The environment ID must be provided (i.e. envid) and
the updates has to be specified in the input parameter (i.e. as an environment Manifest)

REST method POST
Resource identifier /environment/{envid}/update
Input parameter An XML environment manifest

2 EnvironmentDescriptor.xml refers to the path of an XML manifest describing the environment to create.
® The hostname and the port number where the API is deployed. CF-api is the application path.

mailto:–d@EnvironmentDescriptor.xml
http://hostname:port/CF-api/environment

Response The new XML environment descriptor.

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

Example using CURL

Request

curl =X Post —d@EnvironmentDescriptor.xml —H “Content-Type: application/xml”
http://hostname:port/CF-api/environment/1/update

Response
Return code: 200 OK

Response: The XML environment descriptor

e Destroy Environment

This method destroys an environment given its ID.

REST method DELETE

Resource identifier /environment/{envid}

Input parameter

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

¢ Find Environments

This method lists the available environments.

REST method GET

Resource identifier /environment

Input parameter --

Response A list of XML environment descriptors of the existing environments

Status code 200 if OK the error code otherwise (see Section 0 for possible error codes)

e Describe Environment

This method returns the XML environment description of an environment given its ID.

REST method GET

Resource identifier /environment/{envid}

Input parameter --

Response The XML environment descriptor

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

o Get Deployed Applications

This method lists the deployed application in an environment given its ID

REST method GET

Resource identifier /environment/{envid}/app

Input parameter

Response A list of XML application descriptors

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/environment

e Get Information

This method lists the runtimes, frameworks and services supported by the PaaS.

REST method GET

Resource identifier / environment/info

Input parameter --

Response The list of supported runtimes, frameworks and services

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

D. The Application Manager Resource
In this section, we introduce the application manager resource, its different child resources and their
associated methods. We start this section by providing examples of an application manifest (required
as input by some of the REST methods of the application manager resource) and of an application
description (returned as response by some of the REST methods of the application manager resource).

Application manifest

createApplication and updateApplication operations requires as input an application manifest. This
manifest allows developer providing information needed by the PaaS to manage its deployment and
execution. It allows, among others, specifying the application name, its different versions with specific
properties of each of them and a set of operational instances. It also allows specifying the type and the
location of the source archives needed by the API at deployment time. An XML schema describing the
various descriptive elements of the application manifest and their hierarchy is illustrated in Figure 7.

Note: the application manifest used in this document is given as an example. While
implementing our API you can specify your own manifests.

(A] name : string
(A | content_type : string
'-E i [E | paas_deployable : <None=
@ location : string
(A | multitenancy_level : string
"E w1 [E paas_version_instance @ name : string
o_1' LE]| paas_version (A uri : string
(A | description : string
i ['E | paas_application
@ state : string
"E (A | default_instance : string
@ label : string
(A | description : string
1 [E paas_environment
@ name : string
(A| description : string

Figure 7 XML schema of an application Manifest

Application description

Some of the application management operations return as output an XML application descriptor. The
XML format of this descriptor is specific and depends on the *-PaaS APl implementation. In the
following, we provide the XML schema for the application descriptor corresponding to the
CloudFoundry APl implementation (see Figure 8).

Note: the application description used in this document is given as an example. While
implementing our API you can specify your proper application description.

[E] <Ref> :uris : NCName

[E] uris
[E | deployable : <None>

@ deployableDirectory : string

[[E] <Ref> : deployable
] <he = (A | deployableName : string
@ deployableType : NCName
"EE [E | staging
- N m ressource : <None>
[E] <Ref> : staging ..E . [[E] <Ref> :ressource ~
1. (A] key : NCName
[E | application [E| <Ref> : services [E | services : NCName
["E] linksList
@ label : string
[E] <Ref> : linksList) i i
-E T [E | Link : <None> (A | action : string
@ href : string
(A | appld : integer

(A | appName : NCName
(A | nbInstances : integer

(A | status : NCName

Figure 8 XML schema of a possible application description

In Table 2, we provide the semantics of the different elements (f@) and attributes (@) in the
application descriptor and provide the corresponding element in the application Manifest (See Figure 7
and Figure 8).

Element of the application
descriptor

Description

Corresponding element in the
application manifest

E_] uris

The URI of the deployed application. This
URI is automatically generated using the
provided application name and the PaaS
URI.

LET deployable

This element describes the application
deployable (e.g. artifact, source files ...).

"E <paas_deployable>

LE | staging

This element describes the runtime,
framework and commands required by the
application. This information is retrieved
from the <paas_node> element in the
environment manifest.

BB services This element describes the services (e.g. | --
messaging, databases ...) used by the
application. This information is retrieved
from the <paas node> element in the
environment manifest.

LE J linksList The set of links associated to the application | --
(see Section F). These links are
automatically generated.

] appld An automatically generated identifier for the | --
application.

(A] appName The application’s name. (Al name defined in
<paas_application>

(A] nbinstances The number of the application instances. The number of
<paas_version_instance>
elements.

(A status This attribute indicates the status | --

(STARTED/STOPPED) of the application.
When an application is created, the default
value is STOPPED.

Table 2 elements and attributes of the application description

Application management methods
o Create Application

This method creates a new application using an application descriptor.

REST method POST

Resource identifier lapp

Input parameter An XML application manifest

Response An XML application descriptor. This descriptor contains, among other
information, the created application’s ID.

Status code 200 if OK the error code otherwise (see Section 0 for possible error codes)

Example using CURL

Request

curl —X Post —d@ApplicationDescriptor.xml* ~H “Content-Type: application/xml”
http://hostname:port/CF-api/app

Response
Return code: 200 OK

Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<application xmlIns:ns2="ressources" appName="SampleApplication" appld="2" status="STOPPED" memory="512"

checkExists="true" nbInstances="1">
<uris>SampleApplication.cloudfoundry.com</uris>

<deployable deployableName="SampleServlet.war" deployableType="artifact"
deployableDirectory="APPLICATION_PATH"/>

<versionlnstances instanceName="Instancel"/>

<linksList>
<link label="describeApplication()" action=" GET " href="http://localhost:8080/CF-api/rest/app/2"/>

* ApplicationDescriptor.xml refers to the path of an XML manifest describing the application to create.

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/app

<link label="destroyApplication()" action="DELETE" href="http://localhost:8080/CF-api/rest/ app/2/delete"/>
</linksList>
</application>

e Update Application

This method updates an existing application. The application ID must be provided (i.e. appld) and the
updates has to be specified in the input parameter (i.e. as an application Manifest).

REST method POST

Resource identifier /app/{appld}/update

Input parameter An XML application manifest

Response The new XML application descriptor

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

Example using CURL

Request

curl =X Post —d@ApplicationDescriptor.xml —H “Content-Type: application/xml”
http://hostname:port/CF-api/app/2/update

Response
Return code: 200 OK

Response: The XML application descriptor

e Find Applications

This method lists the available applications.

REST method GET

Resource identifier lapp

Input parameter --

Response A list of XML application descriptors of the existing applications

Status code 200 if OK the error code otherwise (see Section 0 for possible error codes)

Example using CURL

Request
curl =X Get http://hostname:port/CF-api/app

Response
Return code: 200 OK

Response: The list of XML application descriptors

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/app
http://hostname:port/CF-api/app

e Start Application

This method starts a deployed application.

REST method POST

Resource identifier /app/{appld}/start
Input parameter --

Response The XML application descriptor with the value of the status attribute set to
STARTED
Status code 200 if OK the error code otherwise (see Section O for possible error codes)

e Stop Application

This method stops a started application.

REST method POST

Resource identifier lapp/{appld}/stop
Input parameter -~

Response The XML application descriptor with the value of the status attribute set to
STOPPED
Status code 200 if OK the error code otherwise (see Section O for possible error codes)

e Restart Application

This method restarts a deployed application.

REST method POST

Resource identifier lapp/{appld}/restart
Input parameter --

Response The XML application descriptor with the value of the status attribute set to
STARTED
Status code 200 if OK the error code otherwise (see Section O for possible error codes)

o Describe Application

This method returns the XML application description for an application given its ID.

REST method GET

Resource identifier lapp/{appld}
Input parameter --

Response The XML application descriptor

Status code 200 if OK the error code otherwise (see Section 0 for possible error codes)

e Destroy Application

This method deletes an application given its ID.

REST method DELETE

Resource identifier lapp/{appld}
Input parameter --

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

Example using CURL

Request
curl =X Delete http://hostname:port/CF-api/app/3

Response
Return code: 200 OK

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<operationResponse value="The application with ID 3 was successfully destroyed"/>

e Destroy Applications

This method deletes all existing applications.

REST method DELETE

Resource identifier /app/delete

Input parameter

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

e Deploy Application

This method deploys an application identified by its ID (i.e. appld) on an existing environment also
identified by its ID (i.e. envld).

REST method POST

Resource identifier lapp/{appld}/action/deploy/env/{envid}
Input parameter --

Response An XML application descriptor

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

Example using CURL

Request

curl =X Post http://hostname:port/CF-api/environment/1/update/action/deploy/app/2

Response
Return code: 200 OK

Response: The application 2 was successfully deployed on the environment 1

e Undeploy Application

This method un-deploys an application identified by its ID (i.e. appld) already deployed on an existing
environment also identified by its ID (i.e. envld).

REST method POST

Resource identifier lapp/{appld}/action/undeploy/env/{envid}

Input parameter

http://hostname:port/CF-api/app
http://hostname:port/CF-api/environment

Response The un-deployment discharge

Status code 200 if OK the error code otherwise (see Section O for possible error codes)

E. Common errors
This section lists common errors, based on the HTTP status codes®, which can be returned by
the management operations.

Error Description HTTP Status
Code
" Bad Request The request has a syntax error (invalid action, missing | 400
‘é parameter ...).
& |Resource Not Found |The requested resource (environment or application) |404
bt was not found.
(3]}
6 Method Not Allowed |The used REST action (i.e. GET, POST ...) is not|405
allowed on that resource.

Internal Failure The internal processing has failed due to some|500
g unexpected errors.
|-
5 |Service Unavailable | The request has failed due to a temporary failure on|503
= the server
>
& | Timeout exception The server took long time to respond. 504
n

F. Link Elements
The *-PaaS API uses link elements to connect: (1) application objects to environment objects and (2)
different management methods to application and environment objects. The aim of links is to ease the
retrieval, by a human or software agent, of the information associated to an environment or an
application object.

The structure of the link element is described in Figure 9.
@ label : string
E Link : <None> @ action : string
(Q href : string

Figure 9 XML schema of the link element

In Table 3, we provide the semantics of the different attributes (@) of the link element.

Attribute Description

CA T tabel The name of the management method (e.g. describeApplication(),
destroyEnvironment(), etc.)

(A action The associated REST action (e.g. GET, POST, etc.)

CA] href The URI, including the resource identifier, of the management method

Table 3 attributes of the link element

> Fielding, et al. HTTP/1.1, Internet RFC 2616, available at: http://www.ietf.org/rfc/rfc2616.txt.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Annex A: Application and Environment Management Operations
The following Table provides a summary of the different Application and environment management
operations and their associated REST method and resource identifiers.

Application management operations

Operation Command

Create Application POST /app

Update Application POST /app/{appld}/update

Find Applications GET /app

Start Application POST /app/{appld}/start

Stop Application POST /app/{appld}/stop

Restart Application POST /app/{appld}/restart
Describe Application GET /app/{appld}

Destroy Application DELETE /app/{appld}

Destroy Applications DELETE /app/delete

Deploy Application POST /app/{appld}/action/deploy/env/{envid}
Undeploy Application POST /app/{appld}/action/undeploy/env/{envid}
Environment management operations

Operation Command

Create Environment POST /environment

Update Environment POST /environment/{envid}/update
Destroy Environment DELETE /environment/{envid}
Find Environments GET /environment

Describe Environment GET /environment/{envid}

Get Deployed Applications | GET /environment/{envid}/app

Get information GET /environment/info

