

The *-PaaS API specification
Version 1.5.1

Telecom SudParis, Computer Science Department

Table of contents

A. Introduction ... 3

B. Overview on the *-PaaS API ... 3

C. The Environment Manager Resource .. 5

Environment manifest ... 5

Environment description ... 5

Environment management methods .. 7

D. The Application Manager Resource .. 9

Application manifest ... 9

Application description ... 11

Application management methods .. 12

E. Common errors .. 16

F. Link Elements .. 16

Annex A: Application and Environment Management Operations ... 18

A. Introduction
This document provides a description of the *-PaaS API based on REST/XML. This API is designed

to provide an abstraction layer and a middleware for existing PaaS solutions to manage applications

and environments in a generic fashion (Figure 1). To define a new connection between a novel PaaS

and developer /application, one has simply to add its specific implementation.

Figure 1 : Overview

Two *-PaaS API implementations are available (V 0.1): a Cloud Foundry implementation (CF-PaaS)

and an OpenShift implementation (OS-PaaS). Both implementations are available at:

http://gitorious.ow2.org/ow2-compatibleone/coaps/ and a user guide for CF-PaaS is available at:

http://www-inf.it-sudparis.eu/~sellami/starPaaS/PaaSAPI-UserGuide.pdf.
1

B. Overview on the *-PaaS API
*-PaaS API exposes two main resources: RestApplicationManager and RestEnvironmentManager.

RestApplicationManager offers PaaS application management methods (See Figure 2). By

“application” we mean any computer software or program that can be deployed over a PaaS.

Application source archives should be provided by the developer in a bundled format (i.e. war, ear,

zip, etc.) or extracted format (i.e. a local folder with the different files and dependencies, distant URL,

etc.).

1
 Both implementations and the user guide use an old version of the specification and some inconsistencies

with the current specification can be found.

http://gitorious.ow2.org/ow2-compatibleone/coaps/
http://www-inf.it-sudparis.eu/~sellami/starPaaS/PaaSAPI-UserGuide.pdf

Figure 2 RestApplicationManager

RestEnvironmentManager offers PaaS environment management methods (See Figure 3). A PaaS

environment represents a set of ‘’settings’’ needed to host and run an application in this PaaS: i.e. the

needed runtime (java 7, java 6, ruby, etc.), the needed frameworks/containers (spring, tomcat, ruby,

etc.) and eventually needed services (databases, messaging, etc.).

Figure 3 RestEnvironmentManager

To deploy an application and run it through *-PaaS API, one should follow the basic usage scenario

illustrated in Figure 4.

Figure 4 an application deployment scenario

C. The Environment Manager Resource
In this section, we introduce the environment manager resource, its different child resources and their

associated methods. We start this section by providing examples of an environment manifest (required

as input by some of the REST methods of the environment manager resource) and of an environment

description (returned as response by some of the REST methods of the environment manager

resource).

Environment manifest

The createEnvironment and updateEnvironment operations require as input an environment manifest.

This manifest allows developers to specify the different characteristics of the application’s

environment using an environment template (see Figure 5). Each environment template is composed

by a set of PaaS resource nodes and PaaS relations to link these nodes. PaaS nodes can be container

type, database type or router type while relations between them can be a binding between a container

node and a database node or between two containers node through a router node for example.

Note: the environment manifest used in this document is given as an example. While

implementing our API you can specify your own manifests.

Figure 5 schema of a possible environment manifest

Environment description

Some of the environment management operations return as response an XML environment descriptor.

The XML format of this descriptor is specific for the *-PaaS API implementation. In the following, we

Create

Application

Create

Environment

Deploy

Application

Start

Application

provide as an example the XML schema for the environment descriptor specific to a CloudFoundry

implementation of the *-PaaS API (see Figure 6).

Note: the environment description used in this document is given as an example. While

implementing our API you can specify your proper environment description.

Figure 6 XML schema of a possible environment description

In Table 1, we provide the semantics of the different elements in the environment descriptor presented

in Figure 6 and provide the corresponding element in the environment manifest presented in Figure 5.

Element of the environment

descriptor
Description Corresponding element

in the environment

manifest

 staging This element describes the frameworks,

environments and eventual commands offered by

the environment.

The <paas_node>

elements with

container as

content_type value.

 serviceNames This element defines the services (database,

messaging pool …) associated to the environment.

The <paas_node>

elements with

database as

content_type for

persistent values,

container for hosting

applications or router

for formatted

messages between

Paas nodes

 linksList The set of links associated to the environment (see

Section F). These links are automatically

generated.

--

 envId An automatically generated identifier for the

environment.

--

 envName The environment’s name. name defined in
<paas_environment>

 envDesc An optional textual description of the

environment.
 description

defined in
<paas_environment>

 memory The physical memory that is allocated to the

application expressed in Megabytes.
 memory defined

in <paas_environment>
Table 1 elements and attributes of the environment description

Environment management methods

 Create Environment

This method creates a new environment using an environment descriptor. An environment specifies

the needed frameworks, runtimes containers and/or services required by a given application.

REST method POST

Resource identifier /environment

Input parameter An XML environment manifest (in the body of the request)

Response An XML environment descriptor. This descriptor contains, among other

information, the created environment’s ID.

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Post –d@EnvironmentDescriptor.xml
2
 –H “Content-Type: application/xml”

http://hostname:port/CF-api/environment
3

Response

 Return code: 200 OK

 Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<environment envId="1" envName="JavaWebEnv" envDesc="JavaWebApplicationsEnv">

 <staging>

 <entry>

 <key>command</key>

 <value>no</value>

 </entry>

 <entry>

 <key>runtime</key>

 <value>java</value>

 </entry>

 <entry>

 <key>framework</key>

 <value>java_web</value>

 </entry>

 </staging>

 <serviceNames>mysql</serviceNames>

 <linksList>

 <link label="destroyEnvironment()" action="DELETE" href="http://localhost:8080/CF-api/rest/environment/1"/>

 <link label="getEnvironment()" action="GET" href="http://localhost:8080/CF-api/rest/environment/1"/>

 </linksList>

</environment>

 Update Environment

This method updates an existing environment. The environment ID must be provided (i.e. envId) and

the updates has to be specified in the input parameter (i.e. as an environment Manifest)

REST method POST

Resource identifier /environment/{envId}/update

Input parameter An XML environment manifest (in the body of the request)

2
 EnvironmentDescriptor.xml refers to the path of an XML manifest describing the environment to create.

3
 The hostname and the port number where the API is deployed. CF-api is the application path.

mailto:–d@EnvironmentDescriptor.xml
http://hostname:port/CF-api/environment

Response The new XML environment descriptor.

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Post –d@EnvironmentDescriptor.xml –H “Content-Type: application/xml”

http://hostname:port/CF-api/environment/1/update

Response

 Return code: 200 OK

 Response: The XML environment descriptor

 Destroy Environment

This method destroys an environment given its ID.

REST method DELETE

Resource identifier /environment/{envId}

Input parameter --

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Find Environments

This method lists the available environments.

REST method GET

Resource identifier /environment

Input parameter --

Response A list of XML environment descriptors of the existing environments

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Describe Environment

This method returns the XML environment description of an environment given its ID.

REST method GET

Resource identifier /environment/{envId}

Input parameter --

Response The XML environment descriptor

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Get Deployed Applications

This method lists the deployed application in an environment given its ID

REST method GET

Resource identifier /environment/{envId}/app

Input parameter --

Response A list of XML application descriptors

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/environment

 Get Information

This method lists the runtimes, frameworks and services supported by the PaaS.

REST method GET

Resource identifier / environment/info

Input parameter --

Response The list of supported runtimes, frameworks and services

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

D. The Application Manager Resource
In this section, we introduce the application manager resource, its different child resources and their

associated methods. We start this section by providing examples of an application manifest (required

as input by some of the REST methods of the application manager resource) and of an application

description (returned as response by some of the REST methods of the application manager resource).

Application manifest

createApplication and updateApplication operations requires as input an application manifest. This

manifest allows developer providing information needed by the PaaS to manage its deployment and

execution. It allows, among others, specifying the application name, its different versions with specific

properties of each of them and a set of operational instances. It also allows specifying the type and the

location of the source archives needed by the API at deployment time. An XML schema describing the

various descriptive elements of the application manifest and their hierarchy is illustrated in Figure 7.

Note: the application manifest used in this document is given as an example. While

implementing our API you can specify your own manifests.

Figure 7 XML schema of an application Manifest

Application description

Some of the application management operations return as output an XML application descriptor. The

XML format of this descriptor is specific and depends on the *-PaaS API implementation. In the

following, we provide the XML schema for the application descriptor corresponding to the

CloudFoundry API implementation (see Figure 8).

Note: the application description used in this document is given as an example. While

implementing our API you can specify your proper application description.

Figure 8 XML schema of a possible application description

In Table 2, we provide the semantics of the different elements () and attributes () in the

application descriptor and provide the corresponding element in the application Manifest (See Figure 7

and Figure 8).

Element of the application

descriptor
Description Corresponding element in the

application manifest

 uris The URI of the deployed application. This

URI is automatically generated using the

provided application name and the PaaS

URI.

--

 deployable This element describes the application

deployable (e.g. artifact, source files …).
 <paas_deployable>

 Staging This element describes the runtime,

framework and commands required by the

application. This information is retrieved

from the <paas_node> element in the

environment manifest.

--

 services This element describes the services (e.g.

messaging, databases …) used by the

application. This information is retrieved

from the <paas_node> element in the

environment manifest.

--

 linksList The set of links associated to the application

(see Section F). These links are

automatically generated.

--

 appId An automatically generated identifier for the

application.

--

 appName The application’s name. name defined in
<paas_application>

 nbInstances The number of the application instances. The number of
<paas_version_instance>
elements.

 status This attribute indicates the status

(STARTED/STOPPED) of the application.

When an application is created, the default

value is STOPPED.

--

Table 2 elements and attributes of the application description

Application management methods

 Create Application

This method creates a new application using an application descriptor.

REST method POST

Resource identifier /app

Input parameter An XML application manifest (in the body of the request)

Response An XML application descriptor. This descriptor contains, among other

information, the created application’s ID.

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Post –d@ApplicationDescriptor.xml
4
 –H “Content-Type: application/xml”

http://hostname:port/CF-api/app

Response

 Return code: 200 OK

 Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<application xmlns:ns2="ressources" appName="SampleApplication" appId="2" status="STOPPED" memory="512"

checkExists="true" nbInstances="1">

 <uris>SampleApplication.cloudfoundry.com</uris>

 <deployable deployableName="SampleServlet.war" deployableType="artifact"

deployableDirectory="APPLICATION_PATH"/>

 <versionInstances instanceName="Instance1"/>

 <linksList>
 <link label="describeApplication()" action=" GET " href="http://localhost:8080/CF-api/rest/app/2"/>

4
 ApplicationDescriptor.xml refers to the path of an XML manifest describing the application to create.

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/app

 <link label="destroyApplication()" action="DELETE" href="http://localhost:8080/CF-api/rest/ app/2/delete"/>

 </linksList>

</application>

 Update Application

This method updates an existing application. The application ID must be provided (i.e. appId) and the

updates has to be specified in the input parameter (i.e. as an application Manifest).

REST method POST

Resource identifier /app/{appId}/update

Input parameter An XML application manifest (in the body of the request)

Response The new XML application descriptor

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Post –d@ApplicationDescriptor.xml –H “Content-Type: application/xml”

http://hostname:port/CF-api/app/2/update

Response

 Return code: 200 OK

 Response: The XML application descriptor

 Find Applications

This method lists the available applications.

REST method GET

Resource identifier /app

Input parameter --

Response A list of XML application descriptors of the existing applications

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Get http://hostname:port/CF-api/app

Response

 Return code: 200 OK

 Response: The list of XML application descriptors

mailto:–d@ApplicationDescriptor.xml
http://hostname:port/CF-api/app
http://hostname:port/CF-api/app

 Start Application

This method starts a deployed application.

REST method POST

Resource identifier /app/{appId}/start

Input parameter --

Response The XML application descriptor with the value of the status attribute set to

STARTED

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Stop Application

This method stops a started application.

REST method POST

Resource identifier /app/{appId}/stop

Input parameter --

Response The XML application descriptor with the value of the status attribute set to

STOPPED

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Restart Application

This method restarts a deployed application.

REST method POST

Resource identifier /app/{appId}/restart

Input parameter --

Response The XML application descriptor with the value of the status attribute set to

STARTED

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Describe Application

This method returns the XML application description for an application given its ID.

REST method GET

Resource identifier /app/{appId}

Input parameter --

Response The XML application descriptor

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Destroy Application

This method deletes an application given its ID.

REST method DELETE

Resource identifier /app/{appId}

Input parameter --

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Delete http://hostname:port/CF-api/app/3

Response

 Return code: 200 OK

 Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<operationResponse value="The application with ID 3 was successfully destroyed"/>

 Destroy Applications

This method deletes all existing applications.

REST method DELETE

Resource identifier /app/delete

Input parameter --

Response The destroy discharge

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

 Deploy Application

This method deploys an application identified by its ID (i.e. appId) on an existing environment also

identified by its ID (i.e. envId). The application artifact to deploy must also be included.

REST method POST

Resource identifier /app/{appId}/action/deploy/env/{envId}

Input parameter The application artifacts (as a file)

Response An XML application descriptor

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

Example using CURL

Request

 curl –X Post -F file
5
=@SampleApp.war http://hostname:port/CF-api/app/1/action/deploy/env/2

Response

 Return code: 200 OK

 Response: The application 2 was successfully deployed on the environment 1

 Undeploy Application

This method un-deploys an application identified by its ID (i.e. appId) already deployed on an existing

environment also identified by its ID (i.e. envId).

5
 ‘’file’’ references the name of the file field name used by the deploy operation of the CF-PaaS API

implementation.

http://hostname:port/CF-api/app
http://hostname:port/CF-api/app

REST method POST

Resource identifier /app/{appId}/action/undeploy/env/{envId}

Input parameter --

Response The un-deployment discharge

Status code 200 if OK the error code otherwise (see Section E for possible error codes)

E. Common errors

This section lists common errors, based on the HTTP status codes
6
, which can be returned by

the management operations.

 Error Description HTTP Status

Code

C
li

en
t

er
ro

rs
 Bad Request The request has a syntax error (invalid action, missing

parameter …).

400

Resource Not Found The requested resource (environment or application)

was not found.

404

Method Not Allowed The used REST action (i.e. GET, POST …) is not

allowed on that resource.

405

S
er

v
er

 e
rr

o
rs

 Internal Failure The internal processing has failed due to some

unexpected errors.

500

Service Unavailable The request has failed due to a temporary failure on

the server

503

Timeout exception The server took long time to respond. 504

F. Link Elements
The *-PaaS API uses link elements to connect: (1) application objects to environment objects and (2)

different management methods to application and environment objects. The aim of links is to ease the

retrieval, by a human or software agent, of the information associated to an environment or an

application object.

The structure of the link element is described in Figure 9.

Figure 9 XML schema of the link element

In Table 3, we provide the semantics of the different attributes () of the link element.

6
 Fielding, et al. HTTP/1.1, Internet RFC 2616, available at: http://www.ietf.org/rfc/rfc2616.txt.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Attribute Description

 label The name of the management method (e.g. describeApplication(),

destroyEnvironment(), etc.)

 action The associated REST action (e.g. GET, POST, etc.)

 href The URI, including the resource identifier, of the management method

Table 3 attributes of the link element

Annex A: Application and Environment Management Operations
The following Table provides a summary of the different Application and environment management

operations and their associated REST method and resource identifiers.

Application management operations

Operation Command

Create Application POST /app

Update Application POST /app/{appId}/update

Find Applications GET /app

Start Application POST /app/{appId}/start

Stop Application POST /app/{appId}/stop

Restart Application POST /app/{appId}/restart

Describe Application GET /app/{appId}

Destroy Application DELETE /app/{appId}

Destroy Applications DELETE /app/delete

Deploy Application POST /app/{appId}/action/deploy/env/{envId}

Undeploy Application POST /app/{appId}/action/undeploy/env/{envId}

Environment management operations

Operation Command

Create Environment POST /environment

Update Environment POST /environment/{envId}/update

Destroy Environment DELETE /environment/{envId}

Find Environments GET /environment

Describe Environment GET /environment/{envId}

Get Deployed Applications GET /environment/{envId}/app

Get information GET /environment/info

