
FAASIN: Bringing UNIX pipes to
serverless cloud function pipelines

Keywords: cloud, Function-as-a-Service, systems programming, containers, performance

Context
Cloud computing, or in other words, renting remote computing resources, is the mainstream way of
deploying any application. This deployment model had a feedback effect on the applications’
architectures: they are more and more “cloud native”. The newest paradigm in cloud applications is
Function-as-a-Service (FaaS): an application’s features are served by chaining and replicating
elementary functions.

However, chaining function executions in today’s FaaS platforms is not efficient [1]–[4]. It is true
that the control plane of the platform is fast enough to trigger the execution of the next function as
soon as the previous one terminates within hundreds of milliseconds [3], [5]. Nonetheless, passing
output data is extremely slow. Indeed, the Serverless nature implies that all data, in order to persist
beyond the execution of one function, must be copied out of the function that produced it, and
written to an external service (be it block or object storage, message queue, etc.) [2], [5]. Data
movement between the FaaS platform and this remote service is slow by nature [1], [4], and
constitutes a big drawback to porting many applications to the FaaS model.

For instance, a video processing pipeline requires moving chunks of video between many software
components. Each of the latter lends itself to the FaaS paradigm; but the data movement in the FaaS
platform becomes prohibitively expensive (around 30% of any function execution time) [4],
whereas in a non Serverless setting, data would be locally streamed from one software component
to the other. Another example is a chain of functions that all execute very quickly, and produce
small intermediary results. Those could easily be kept locally, or even sent directly as argument to
the next function in line, but this is impossible in current FaaS platforms. For the former alternative,
only a remote service can offer such persistence, which comes with a latency penalty that is
disproportionate in the face of the size of the data and the latency of execution of the next function.
As for the latter alternative, passing the data as arguments – on which there is most often a size limit
anyway [3] – to the next function requires marshaling, imposing a CPU and latency overhead.

Related work
Previous works are mostly of two kinds: automatic smart scheduling policies, and optimized data
passing layers. Other works outside of this categorization only focus on specific applications and
apply optimizations limited to their domains [6].

Of the first kind are Faastlane [3] and SONIC [2]. Faastlane automatically repackages functions in a
workflow to leverage thread locality when possible, whereas SONIC leverages machine-learning to
chose between data passing strategies depending on the size of the data and on the workflow
topology: local storage, direct passing or remote storage. In essence, this first kind of solution is

1/4

about maximizing data locality through scheduling, which requires heuristics to balance between
efficient usage of the platform’s resources and inter-function latency.

Of the second kind are Crucial [1] and SAND [4]. Crucial is an example of trying to work around
the stateless property of the FaaS, and it does so by implementing a shared memory layer across the
data-center. As for SAND, it implements a hierarchical message bus to provide both for very fast
local message passing, and slower communication at the data-center level. Another example is
Pocket [7], that implements a highly scalable data store, thus trying to solve the problem at the
remote storage layer. A final example of optimized data passing layers comes from Faasm [5], that
implements functions as threads of a WebAssembly (WASM) virtual machine; by doing so, it also
proposes shared state in the form of shared byte arrays. A summary of this kind of solution, is they
propose solutions to the performance problem of the communication layer, be it through networking
and state passing, or through storage.

In contrast, the goal of this project is to implement a solution that is an optimized data passing layer,
and that takes advantage of function locality while remaining efficient without locality, thus
eschewing the need for scheduling heuristics.

Goals
From the previous examples, it follows that a good solution is to keep the data local, in a way that
the next function does not have any processing to do to get it (i.e., no marshaling). Accounting for
distributed data will be dealt with later.1

The goal of the internship is to explore the following new way of passing data to the next function
in chain: to transfer data between functions by streaming through a local in-memory pipe, as
illustrated in Figure 1. With this system, a chain of two functions A then B, is executed by:

1. creating the pipe between A’s output and B’s input;
2. running A: pass parameters, set one end of the pipe as an output stream in its context;
3. running B: pass parameters, set the other end of the pipe as an input stream in its context;
4. terminate A: retrieve its return value and close its end of the pipe when it terminates;
5. terminate B: retrieve its return value when it terminates (may not be when the pipe closes)

This is very similar to UNIX pipelines of commands: when a command line such as grep
pattern | wc -l is executed, the standard output stream (stdout) of the command grep is
piped (i.e., sent through a pipe located in local memory) to the standard input stream (stdin) of the
command wc. Note that both commands are written with the expectation that they receive input to
process on stdin, and they send output to stdout.2 The implementation will indeed try to mimic
the semantics of reading from and writing to pipes to lower the usage barrier. Thus, the envisioned
implementation will provide functions with new file descriptors that correspond to the input and the
output of their step in the pipeline. The input stream from the function chain is called Function-as-a-
Service input (faasin), and the output stream is called Function-as-a-Service output (faasout);
thus the name of the project: FAASIN (pronounce “phase in”).

1 There is already a promising lead.
2 Although in this specific example, both grep and wc can read their input from files passed as arguments.

2/4

Current serverless functions are not platform-agnostic, so requiring changes to the programming
API (here, to read and write to different file descriptors) is acceptable. In addition, serverless
platforms most often provide their own language runtimes (Java, Python, NodeJS, etc.) which
means that it is also acceptable to change the runtimes or adapt the shims used by the platforms
(here, to open faasin and faasout). At the platform level, functions are most often run in
containers, such as Docker. In this case, they provide isolation by running different functions (and
functions instances) in different processes. So any implementation of this mechanism may also
require modifying the container engine to pass faasin and faasout around.

Note that this is different from allowing direct communication from one function to the next through
a networking layer using sockets. First, direct communication between functions is usually not
permitted because executing a function only creates a nameless, interchangeable instance. Second,
going through the network and using sockets requires marshaling, which has already been described
before as a consequent CPU and memory penalty. In the case of FAASIN, only raw bytes are sent
and received, so no marshaling is required. Zero-copy data transfer could also be studied.

For now, the steps and goals of the internship to implement FAASIN are:

• implement the general mechanism of opening faasin and faasout in Docker containers;
• implement it at the function runtime and at the function programming language level;
• implement it in a FaaS platform;
• demonstrate the performance and programmability gains on real-world applications.

Perspectives
While not realistically a part of this project, further leads will be worth exploring in the future:

• Cross-node data passing: a clear limitation of this project is that it forces scheduling all
functions of a chain on the same host node. It comes from the technical implementation
itself: in-memory pipes. However, this same technique can be used to implement cross-node
data passing thanks to Remote Direct Memory Access (RDMA), which essentially allows to
locally map remote memory areas, in an extremely efficient way latency-wise.

• Zero-copy: FaaS is felt to be a very good fit for big data processing. In this setting, copying
data when not necessary degrades performance, so further work could explore zero-copy
implementations of this streaming mechanism.

The supervisor is Mathieu Bacou (mathieu.bacou@telecom-sudparis.eu).

3/4

Figure 1: Illustration of offering UNIX pipes to FaaS functions.

Fa
aS

 p
la

tfo
rm

Fn. A

● Query params
● Input stream (faasin)
● Output stream (faasout)

while read obj from faasin:
 pobj <- process obj
 write pobj to faasout
return val

● Query params
● Input stream (faasin)
● Output stream (faasout)

Fn. B
while read obj from faasin:
 pobj <- process obj
 write pobj to faasout
return val

● Return value

● Return value

1

2

4

5

3

mailto:mathieu.bacou@telecom-sudparis.eu

Bibliography
[1] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the faas

track: Building stateful distributed applications with serverless architectures,” in Proceedings of
the 20th International Middleware Conference, 2019, pp. 41–54.

[2] A. Mahgoub et al., “SONIC: Application-aware Data Passing for Chained Serverless
Applications,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021.

[3] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating Function-as-a-Service
Workflows,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021.

[4] I. E. Akkus et al., “SAND: towards high-performance serverless computing,” in Proceedings of
the 2018 USENIX Conference on Usenix Annual Technical Conference, USA, Jul. 2018.

[5] S. Shillaker and P. Pietzuch, “Faasm: Lightweight Isolation for Efficient Stateful Serverless
Computing,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), Jul. 2020.

[6] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A Serverless Video Processing
Framework,” in Proceedings of the ACM Symposium on Cloud Computing, New York, NY,
USA, Oct. 2018, pp. 263–274. doi: 10.1145/3267809.3267815.

[7] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: elastic
ephemeral storage for serverless analytics,” in Proceedings of the 13th USENIX conference on
Operating Systems Design and Implementation, USA, Oct. 2018, pp. 427–444.

4/4

	Context
	Related work
	Goals
	Perspectives

