
Multicore Programming Non-volatile main memory

Non-volatile main memory

Master in computer science of IP Paris

Master CHPS of Paris Saclay

Gaël Thomas

1

Multicore Programming Non-volatile main memory

Non-volatile main memory

Non volatile main memory
• Byte addressability, directly by the processor through the

memory bus with normal load/store instructions
• Durability as a SSD
• Performance: between DDR4 and NVMe (SSD through PCIe)

2

Classical volatile memory (DDR4) Persistent storage (flash)

Non volatile main
memory

+

=

Multicore Programming Non-volatile main memory

NVMM performance

3

◼ Latency
• 2x slower than a DDR4
• 1000x to 10000x faster than a NVMe

◼ Throughput
• 2x to 4x lower than a DDR4
• 4x to 10x higher than a NVMe

Sequential Random

Read Write Bandwidth Read Write bandwidth

DDR4 80ns 60ns ~100Gbps 100ns 60ns ~100Gbps

Optane DC 160ns 60ns 40Gbps 300ns 120ns 14Gbps

NVMe 250µs 250µs 3Gbps 250µs 250µs 3Gbps

Multicore Programming Non-volatile main memory

How to use a NVMM

4

◼ At the hardware level
• Recorded by the BIOS as any memory bank
• Marked as non volatile

◼ At the system level with Linux
• Exposed as a device
• Formatted with a direct access file system (DAX)

– Bypass the IO cache => direct load/store to the NVMM
• Accessible with classical IO functions (read, write and mmap)

– In case of mmap, direct access

Multicore Programming Non-volatile main memory

How to use a NVMM with Linux

5

Direct access
file system

(e.g., ext4-dax)

Kernel page cache
(IO cache)

Non-direct
access file

system
(e.g., ext4)

/dev/pmem0 /dev/sdb

/mnt/nvmm/... /mnt/disk/...

mounted as mounted as

NVMM exposed as /dev/pmem0
Formatted with ext4-dax
 => bypass the kernel page cache
Mounted in /mnt/nvmm

SSD exposed as /dev/sdb
Formatted with ext4
 => use the kernel page cache
Mounted in /mnt/disk

Multicore Programming Non-volatile main memory

How to use a NVMM with Linux

6

Direct access
file system

(e.g., ext4-dax)

Kernel page cache
(IO cache)

Non-direct
access file

system
(e.g., ext4)

/dev/pmem0 /dev/sdb

/mnt/nvmm/... /mnt/disk/...

mounted as mounted as

int fd = open("/mnt/[nvmm,disk]/myfile", O_RDWR | O_CREAT);
ftruncate(fd, 1024*1024);
char* addr = mmap(NULL, 1024*1024, PROT_READ | PROT_WRITE,
 MAP_SHARED_VALIDATE | MAP_SYNC, fd, 0);
addr[0] = 'a';

direct write
to NVMM

write in the volatile page cache, which is
eventually propagated to disk

Multicore Programming Non-volatile main memory

Crash management

7

◼ A crash may happen at any time
• At recovery, the NVMM state is still there
• The state is not necessarily consistent
• An application has to cleanup this state

◼ Example
struct id {
 char name[256];
};

struct id* id = mmap(...);

strcpy(id->name, "Pikachu");

In case of crash inside strcpy, id->name may contain inconsistent values
(neither "" nor "Pikachu")

Multicore Programming Non-volatile main memory

Crash management

8

◼ Solution: use transactions!
• Manually manage the transaction (see below)
• Or use a high-level library such as the pmdk

◼ Principle of solution

struct id {
 char name[256];
 bool committed;
};

struct id* id = mmap(...);

if(!id->isCommitted) { /* recover */
 strcpy(id->name, "Pikachu");
 id->committed = true;
}

Multicore Programming Non-volatile main memory

Out-of-order execution

9

◼ Modern processors execute instructions out of order
• id->committed may be executed before strcpy
• The NVMM state at recovery is thus unknown with our code

◼ Principle of solution: enforce the ordering

◼ Problem: a memory fence enforces the ordering in the
processor cache, but the cache lines can be flushed in any
order....

if(!id->isCommitted) { /* recover */
 strcpy(id->name, "Pikachu");
 memory_fence();
 id->committed = true;
}

Multicore Programming Non-volatile main memory

Fighting out-of-order execution

10

◼ Introduces two new instructions

◼ pwb(char* addr): adds the cache line that contains addr in
a flush queue that ensures a FIFO order

◼ pfence(): ensures that the stores and pwbs that precede are
executed before the stores and pwbs that succeed

Multicore Programming Non-volatile main memory

Fighting out-of-order execution

11

struct id* id = mmap(...);

if(!id->isCommitted) { /* recover */
 strcpy(id->name, "Pikachu");
 pwb(id->name);
 pfence();
 id->committed = true;
 pwb(&id->committed);
}

Executed before (same variable)

Executed before (pfence)

Executed before (same variable)

=> the cache line that contains id->committed is flushed
 after the cache line that contains id->name
=> id->committed propagated to NVMM after id->name
=> at recovery
 (id->committed == true => id->name == "Pikachu")

Multicore Programming Non-volatile main memory

Stronger guarantees

12

◼ pwb/pfence only ensures the propagation order of the cache
lines
• Does not ensure that a cache line is actually flushed

◼ Sometime, we need stronger guarantees
• For example, only execute a code if a data is durable
• Impossible with only pwb/pfence

◼ Example: durable linearizability, which essentially ensures that
a write becomes visible to other threads if the write is durable

Multicore Programming Non-volatile main memory

Stronger guarantees

13

◼ A third instruction: psync()
• Acts as a pfence()
• And ensures that the cache line is actually propagated to NVMM

strcpy(id->name, "Pikachu");
pwb(id->name);
pfence();
id->committed = true;
pwb(&id->committed);
psync();
atomic_store(&visible, true);

struct id { // NVMM
 char name[256];
 bool committed;
};
_Atomic bool visible; // volatile memory

while(!atomic_load(&visible)) {
}

printf("%s is durable\n",
 id->name);

Thread 1 Thread 2

Multicore Programming Non-volatile main memory

Implementation with a pentium

14

◼ pwb implemented with clwb (cache line write back)

◼ pfence implemented with sfence (store fence)
• Pentium is a TSO: already ensures that a store after store is not

reordonanced
• The sfence additionally ensures that a clwb is not reordonanced

because a clwb is a store-like instruction
• => pfence ensures that the stores and pwb are not reordonanced

◼ psync implemented with sfence (store fence)
• In case of crash, enough residual energy in a pentium to flush

the pending cache lines to the NVMM

Multicore Programming Non-volatile main memory

To take away

15

◼ NVMM: durability for the cost of volatile memory access
• Same order of magnitude, but slower than DDR4

◼ Exposed in Linux through a direct access file system
• For example ext4-dax
• Direct access with open/mmap

◼ Three new instructions to enforce ordering
• pwb: add a cache line to the flush queue
• pfence: store fence + prevent reordering of pwb
• psync: pfence + ensures cache lines written to NVMM

