Processes, threads and

synchronizations

Master in computer science of IP Paris
Master CHPS of Paris Saclay

Gaél Thomas

Definition of a process

m A process is a running instance of a program
« Allow the execution of different programs in parallel
(e.g., fortnite and chrome)
« Allow the execution of the same program multiple times
(e.g., two instances of emacs for two different users)

m The operating system is in charge of
« Managing the life cycle of the processes (start, stop)
* Allowing processes to communicate (signals, pipes, sockets...)
* (Regularly) running the processes on the processors
 Isolating the processes (no shared memory by default)

m A process is roughly a virtualization of a complete machine .

;". -
2 Multicore Programming Processes, threads and synchronizations oy q"

From the call frame to the thread

m During execution, when it starts a function, the process creates
a call frame
« Contains

— the arguments of the functions
— its local variables
— alink to the caller Y 2

 Frees the call frame at the end of the call

add

Z 3
int add(int x, int y) { v
int z = x + y; maln
return z;
} argc 1
int main (int argc, char** argv) {
- wo N\ , argv | 0x???
printf ("$d\n", add(l, 2));
} QO TEc,
g'.o"%
Multicore Programming Processes, threads and synchronizations) q"

From the call frame to the thread

m During execution, when it starts a function, the process creates

a call frame 5
 Contains add
h Stack
the argul - (of call frames) X 1
— its local Verreroroo
— alink to the caller Y 2
* Frees the call frame at the end of the call 3
Z
<
int add(int x, 1i{ Nextinstruction to be V
int z = x +, 7% '
>) x/ executed main
} argc 1
int main (int argc, char** argv) { 555
printf ("sd\n", add(l, 2)); i argv | 0x?7?"
} ?oLYTEc%
Multicore Programming Processes, threads and synchronizations) q"

From the call frame to the thread

m During execution, when it starts a function, the process creates

a call frame

 Contains
— the arguments of the functions
— its local variables
— alink to the caller

 Frees the call frame at the end of the call

m Athread is an execution context executable by a CPU
« A stack of call frames (e.g., main calls add)
« The next instruction to be executed (e.g., the return z)

m An operating system schedules the threads on the CPUs

;"0 -
5 Multicore Programming Processes, threads and synchronizations oy q“’

Processes and threads

A process contains
A memory (data, code, heap)

« One or more threads (each with its stack and its next instruction)

A process always starts with a single thread

A process may create more threads to increase parallelism

* The operating system can then schedule the multiple threads on

the multiple CPUs in parallel

A process dies when its last thread terminates

Multicore Programming

Processes, threads and synchronizations

YT

Q0 TEc,
° 2
' Ok
= c
2 m
¥ 4
%, ’@‘

bg o®

Thread identification

m Type that can hold a thread identifier: pthread t

m |dentifier of the running thread: pthread t pthread self ()

;". -
7 Multicore Programming Processes, threads and synchronizations) q"

Thread creation

int pthread create(pthread t* tid, pthread attr t~*
attr, void* (*start routine) (void*), void* arg)

» Create and start a new thread

* The new thread starts in the function start routine

 The start routine function receives the argument arg
 pthread create fills *tid with the identifier of the new thread
 pthread attr t gives attribute (scheduling, stack pointer...)

void* f(void* arg) { printf("f is running\n"); return NULL; }

int main(int argc, char** argv) {
pthread t tid;
pthread create(&tid, NULL, f, NULL);
printf ("main is running in parallel with f\n");

}

8 Multicore Programming Processes, threads and synchronizations ”‘;’

Thread termination

m After an explicit call to pthread exit (void* retval)
m Atthe endofthe start rountine

m T[he system also terminates all the threads of a process when:
« The main function returns
* One of the threads of the process calls exit

5". -
9 Multicore Programming Processes, threads and synchronizations oy #3’

Waiting the termination of a thread

B int pthread join(pthread t thread, void**
pretval) ;

void* f(void* arg) {
printf ("f is running\n");
return (void*)0x42;

int main(int argc, char** argv) {
pthread t tid;
void* retval;
pthread create(&tid, NULL, £, NULL);
printf ("main is running in parallel with f\n");
pthread join(tid, &retval);
printf ("f terminated with retval S$p\n", retval);

10 Multicore Programming Processes, threads and synchronizations

QQQQQQQ

Detached mode

m By default, a thread is in the joinable mode
* When the thread dies, the system keeps its return value, which
consumes system resources
* Another thread can use pthread join to retrieve this value

m In detached mode
« The system immediately frees all the system resources used by
a thread when it exits
* [t is impossible to retrieve its return value

m You can change the mode of a thread to detached
 Through acallto pthread detach (pthread t tid)
 Byusing the pthread attr tinpthread create

;". -
11 Multicore Programming Processes, threads and synchronizations oy q"

Shared variables and inconsistencies

m The threads of a process share the same memory
 When a thread modifies a variable, the other threads see the
modification
« Concurrent accesses may lead to inconsistencies

int balance = 1000;

Thread 1 Thread 2
a. void credit () { f. void debit () {
b. int tmp = balance; g int tmp = balance;
C. tmp = tmp + 100; h. tmp = tmp - 1;
d. balance = tmp; 1 balance = tmp;
e. } J. '}

m Possible schedule: fg abcde hij => the credit of 100 is lost!

12 Multicore Programming Processes, threads and synchronizations

Principle to avoid inconsistencies

13

Prevent two sections of code that access the same shared

variables to execute at the same time
« We say that the sequences of instructions are in mutual
exclusions

Definition: a critical section is a section of code in mutual

exclusion
 Critical sections execute entirely one after the other
* We say that a critical section executes atomically

A critical section is often in mutual exclusion with itself

;". -
Multicore Programming Processes, threads and synchronizations oy #3’

Implementation of mutual exclusion

14

Mutex: a lock in mutual exclusion
« Two possible states: busy or free

« At each time, only one thread can own (have marked as busy)

the mutex

A mutex provides two operations

« Lock acquisition: waits if the lock is busy and then changes its

state from free to busy

 Lock release: marks the lock as free

The two operations seem to execute atomically

Multicore Programming

Processes, threads and synchronizations

YT

?0\' EQ&
° 2
' Ok
= c
2 m
¥ 4
%, ’@

bg o

Implementation of mutual exclusion

m |Implementation:

 pthread mutex lock: acquire a mutex
 pthread mutex unlock:release a mutex

int balance = 1000;

pthread mutex t m = PTHREAD MUTEX INITIALIZER;

Thread 1

void credit ()
pthread mutex lock (&m);

int tmp = balance;
tmp = tmp + 100;
balance = tmp;

pthread mutex unlock (&m) ;

15 Multicore Programming

Processes, threads and synchronizations B ’5’

Thread 2

void debit () {

pthread mutex lock (&m);

int tmp = balance;
tmp = tmp - 1;
balance = tmp;

pthread mutex unlock (&m) ;

QQQQQQQ

Monitor

m Allows a thread to wait for a certain condition to become true
* Built with a mutex and a variable condition
char* msg = NULL;

pthread mutex t m = PTHREAD MUTEX INITIALIZER;
pthread cond t ¢ = PTHREAD COND INITIALIZER;

Thread 1 Thread 2
volid send () { void recv () {
pthread mutex lock (&m); pthread mutex lock (&m);
msg = "Hello!"; whille (msg == NULL)
pthread cond signal (&c); pthread cond wailt (&c, &m);
pthread mutex unlock (&m) ; printf ("Message: %s\n", msqg);
} pthread mutex unlock (&m);

}

QQQQQQQ

16 Multicore Programming Processes, threads and synchronizations B ’5‘

Monitor

m Allow a thread to wait for a certain condition to become true
* Built with a mutex and a variable condition

m Interface
 Release mutex, sleep on cond, and re-acquire mutex
pthread cond wailt (&cond, &mutex)

 Wake up one thread that sleeps on cond
pthread cond signal (&cond) :

« Wake up all the threads that sleep on cond
pthread cond broadcast (&cond) :

17 Multicore Programming Processes, threads and synchronizations

YT

Q0 TEc,
° 2
' Ok
= c
2 m
¥ 4
%, ’@‘

bg o®

To take away

m Thread life cycle
 pthread create: create a thread
 pthread self: return the thread identifier
« pthread exit:quita thread
* pthread join: wait for the termination of a thread

m Synchronization
* pthread mutex lock: take alock
 pthread mutex unlock:release a lock
 pthread cond wait: wait on a condition variable
« pthread cond signal:wake up a thread that waits on a
condition variable
 pthread cond broadcast: wake up all the threads that walt

on a condition variable
18 Multicore Programming Processes, threads and synchronizations "

