
Multicore Programming Processes, threads and synchronizations

Processes, threads and

synchronizations

Master in computer science of IP Paris

Master CHPS of Paris Saclay

Gaël Thomas

1

Multicore Programming Processes, threads and synchronizations

Definition of a process

◼ A process is a running instance of a program
• Allow the execution of different programs in parallel

(e.g., fortnite and chrome)
• Allow the execution of the same program multiple times

(e.g., two instances of emacs for two different users)

◼ The operating system is in charge of
• Managing the life cycle of the processes (start, stop)
• Allowing processes to communicate (signals, pipes, sockets…)
• (Regularly) running the processes on the processors
• Isolating the processes (no shared memory by default)

◼ A process is roughly a virtualization of a complete machine
2

Multicore Programming Processes, threads and synchronizations

From the call frame to the thread

3

◼ During execution, when it starts a function, the process creates
a call frame
• Contains

– the arguments of the functions
– its local variables
– a link to the caller

• Frees the call frame at the end of the call

main

1argc

0x???argv

add

x

y

z

1

2

3

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main(int argc, char** argv) {
 printf("%d\n", add(1, 2));
}

Multicore Programming Processes, threads and synchronizations

From the call frame to the thread

4

◼ During execution, when it starts a function, the process creates
a call frame
• Contains

– the arguments of the functions
– its local variables
– a link to the caller

• Frees the call frame at the end of the call

main

1argc

0x???argv

add

x

y

z

1

2

3

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main(int argc, char** argv) {
 printf("%d\n", add(1, 2));
}

Next instruction to be
executed

Stack
(of call frames)

Multicore Programming Processes, threads and synchronizations

From the call frame to the thread

5

◼ During execution, when it starts a function, the process creates
a call frame
• Contains

– the arguments of the functions
– its local variables
– a link to the caller

• Frees the call frame at the end of the call

◼ A thread is an execution context executable by a CPU
• A stack of call frames (e.g., main calls add)
• The next instruction to be executed (e.g., the return z)

◼ An operating system schedules the threads on the CPUs

Multicore Programming Processes, threads and synchronizations

Processes and threads

6

◼ A process contains
• A memory (data, code, heap)
• One or more threads (each with its stack and its next instruction)

◼ A process always starts with a single thread

◼ A process may create more threads to increase parallelism
• The operating system can then schedule the multiple threads on

the multiple CPUs in parallel

◼ A process dies when its last thread terminates

Multicore Programming Processes, threads and synchronizations

Thread identification

7

◼ Type that can hold a thread identifier: pthread_t

◼ Identifier of the running thread: pthread_t pthread_self()

Multicore Programming Processes, threads and synchronizations

Thread creation

8

int pthread_create(pthread_t* tid, pthread_attr_t*
attr, void* (*start_routine)(void*), void* arg)

• Create and start a new thread
• The new thread starts in the function start_routine
• The start_routine function receives the argument arg
• pthread_create fills *tid with the identifier of the new thread
• pthread_attr_t gives attribute (scheduling, stack pointer…)

void* f(void* arg) { printf("f is running\n"); return NULL; }

int main(int argc, char** argv) {
 pthread_t tid;
 pthread_create(&tid, NULL, f, NULL);
 printf("main is running in parallel with f\n");
}

Multicore Programming Processes, threads and synchronizations

Thread termination

9

◼ After an explicit call to pthread_exit(void* retval)

◼ At the end of the start_rountine

◼ The system also terminates all the threads of a process when:
• The main function returns
• One of the threads of the process calls exit

Multicore Programming Processes, threads and synchronizations

Waiting the termination of a thread

10

◼ int pthread_join(pthread_t thread, void**
pretval);

void* f(void* arg) {
 printf("f is running\n");
 return (void*)0x42;
}

int main(int argc, char** argv) {
 pthread_t tid;
 void* retval;
 pthread_create(&tid, NULL, f, NULL);
 printf("main is running in parallel with f\n");
 pthread_join(tid, &retval);
 printf("f terminated with retval %p\n", retval);
}

Multicore Programming Processes, threads and synchronizations

Detached mode

11

◼ By default, a thread is in the joinable mode
• When the thread dies, the system keeps its return value, which

consumes system resources
• Another thread can use pthread_join to retrieve this value

◼ In detached mode
• The system immediately frees all the system resources used by

a thread when it exits
• It is impossible to retrieve its return value

◼ You can change the mode of a thread to detached
• Through a call to pthread_detach(pthread_t tid)
• By using the pthread_attr_t in pthread_create

Multicore Programming Processes, threads and synchronizations

Shared variables and inconsistencies

12

◼ The threads of a process share the same memory
• When a thread modifies a variable, the other threads see the

modification
• Concurrent accesses may lead to inconsistencies

◼ Possible schedule: fg abcde hij => the credit of 100 is lost!

Thread 1

a. void credit() {
b. int tmp = balance;
c. tmp = tmp + 100;
d. balance = tmp;
e. }

Thread 2

f. void debit() {
g. int tmp = balance;
h. tmp = tmp - 1;
i. balance = tmp;
j. }

int balance = 1000;

Multicore Programming Processes, threads and synchronizations

Principle to avoid inconsistencies

13

◼ Prevent two sections of code that access the same shared
variables to execute at the same time
• We say that the sequences of instructions are in mutual

exclusions

◼ Definition: a critical section is a section of code in mutual
exclusion
• Critical sections execute entirely one after the other
• We say that a critical section executes atomically

◼ A critical section is often in mutual exclusion with itself

Multicore Programming Processes, threads and synchronizations

Implementation of mutual exclusion

14

◼ Mutex: a lock in mutual exclusion
• Two possible states: busy or free
• At each time, only one thread can own (have marked as busy)

the mutex

◼ A mutex provides two operations
• Lock acquisition: waits if the lock is busy and then changes its

state from free to busy
• Lock release: marks the lock as free

◼ The two operations seem to execute atomically

Multicore Programming Processes, threads and synchronizations

Implementation of mutual exclusion

15

◼ Implementation:
• pthread_mutex_lock: acquire a mutex
• pthread_mutex_unlock: release a mutex

Thread 1

void credit() {
 pthread_mutex_lock(&m);
 int tmp = balance;
 tmp = tmp + 100;
 balance = tmp;
 pthread_mutex_unlock(&m);
}

int balance = 1000;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

Thread 2

void debit() {
 pthread_mutex_lock(&m);
 int tmp = balance;
 tmp = tmp - 1;
 balance = tmp;
 pthread_mutex_unlock(&m);
}

Multicore Programming Processes, threads and synchronizations

Monitor

16

◼ Allows a thread to wait for a certain condition to become true
• Built with a mutex and a variable condition

Thread 1

void send() {
 pthread_mutex_lock(&m);
 msg = "Hello!";
 pthread_cond_signal(&c);
 pthread_mutex_unlock(&m);
}

char* msg = NULL;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t c = PTHREAD_COND_INITIALIZER;

Thread 2

void recv() {
 pthread_mutex_lock(&m);
 while(msg == NULL)
 pthread_cond_wait(&c, &m);
 printf("Message: %s\n", msg);
 pthread_mutex_unlock(&m);
}

Multicore Programming Processes, threads and synchronizations

Monitor

17

◼ Allow a thread to wait for a certain condition to become true
• Built with a mutex and a variable condition

◼ Interface
• Release mutex, sleep on cond, and re-acquire mutex
pthread_cond_wait(&cond, &mutex)

• Wake up one thread that sleeps on cond
pthread_cond_signal(&cond):

• Wake up all the threads that sleep on cond
pthread_cond_broadcast(&cond):

Multicore Programming Processes, threads and synchronizations

To take away

18

◼ Thread life cycle
• pthread_create: create a thread
• pthread_self: return the thread identifier
• pthread_exit: quit a thread
• pthread_join: wait for the termination of a thread

◼ Synchronization
• pthread_mutex_lock: take a lock
• pthread_mutex_unlock: release a lock
• pthread_cond_wait: wait on a condition variable
• pthread_cond_signal: wake up a thread that waits on a

condition variable
• pthread_cond_broadcast: wake up all the threads that wait

on a condition variable

