Processes, threads and

synchronizations

Master in computer science of IP Paris
Master CHPS of Paris Saclay

Gaél Thomas



Definition of a process

m A process is a running instance of a program
« Allow the execution of different programs in parallel
(e.g., fortnite and chrome)
« Allow the execution of the same program multiple times
(e.g., two instances of emacs for two different users)

m The operating system is in charge of
« Managing the life cycle of the processes (start, stop)
* Allowing processes to communicate (signals, pipes, sockets...)
* (Regularly) running the processes on the processors
 Isolating the processes (no shared memory by default)

m A process is roughly a virtualization of a complete machine .
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From the call frame to the thread

m During execution, when it starts a function, the process creates
a call frame
« Contains

— the arguments of the functions
— its local variables
— alink to the caller Y 2

 Frees the call frame at the end of the call

add

Z 3
int add(int x, int y) { v
int z = x + y; maln
return z;
} argc 1
int main (int argc, char** argv) {
- wo N\ , argv | 0x???
printf ("$d\n", add(l, 2));
} QO TEc,
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From the call frame to the thread

m During execution, when it starts a function, the process creates

a call frame 5
 Contains add
h Stack
the argul - (of call frames) X 1
— its local Verreroroo
— alink to the caller Y 2
* Frees the call frame at the end of the call 3
Z
<
int add(int x, 1i{ Nextinstruction to be V
int z = x +, 7% '
> ) x/ executed main
} argc 1
int main (int argc, char** argv) { 555
printf ("sd\n", add(l, 2)); i argv | 0x?7?"
} ?oLYTEc%
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From the call frame to the thread

m During execution, when it starts a function, the process creates

a call frame

 Contains
— the arguments of the functions
— its local variables
— alink to the caller

 Frees the call frame at the end of the call

m Athread is an execution context executable by a CPU
« A stack of call frames (e.g., main calls add)
« The next instruction to be executed (e.g., the return z)

m  An operating system schedules the threads on the CPUs
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Processes and threads

A process contains
A memory (data, code, heap)

« One or more threads (each with its stack and its next instruction)

A process always starts with a single thread

A process may create more threads to increase parallelism

* The operating system can then schedule the multiple threads on

the multiple CPUs in parallel

A process dies when its last thread terminates
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Thread identification

m Type that can hold a thread identifier: pthread t

m |dentifier of the running thread: pthread t pthread self ()
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Thread creation

int pthread create(pthread t* tid, pthread attr t~*
attr, void* (*start routine) (void*), void* arg)

» Create and start a new thread

* The new thread starts in the function start routine

 The start routine function receives the argument arg
 pthread create fills *tid with the identifier of the new thread
 pthread attr t gives attribute (scheduling, stack pointer...)

void* f(void* arg) { printf("f is running\n"); return NULL; }

int main(int argc, char** argv) {
pthread t tid;
pthread create(&tid, NULL, f, NULL);
printf ("main is running in parallel with f\n");

}
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Thread termination

m After an explicit call to pthread exit (void* retval)
m Atthe endofthe start rountine

m T[he system also terminates all the threads of a process when:
« The main function returns
* One of the threads of the process calls exit
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Waiting the termination of a thread

B int pthread join(pthread t thread, void**
pretval) ;

void* f(void* arg) {
printf ("f is running\n");
return (void*)0x42;

int main(int argc, char** argv) {
pthread t tid;
void* retval;
pthread create(&tid, NULL, £, NULL);
printf ("main is running in parallel with f\n");
pthread join(tid, &retval);
printf ("f terminated with retval S$p\n", retval);
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Detached mode

m By default, a thread is in the joinable mode
* When the thread dies, the system keeps its return value, which
consumes system resources
* Another thread can use pthread join to retrieve this value

m In detached mode
« The system immediately frees all the system resources used by
a thread when it exits
* [t is impossible to retrieve its return value

m You can change the mode of a thread to detached
 Through acallto pthread detach (pthread t tid)
 Byusing the pthread attr tinpthread create
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Shared variables and inconsistencies

m The threads of a process share the same memory
 When a thread modifies a variable, the other threads see the
modification
« Concurrent accesses may lead to inconsistencies

int balance = 1000;

Thread 1 Thread 2
a. void credit () { f. void debit () {
b. int tmp = balance; g int tmp = balance;
C. tmp = tmp + 100; h. tmp = tmp - 1;
d. balance = tmp; 1 balance = tmp;
e. } J. '}

m Possible schedule: fg abcde hij => the credit of 100 is lost!
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Principle to avoid inconsistencies

13

Prevent two sections of code that access the same shared

variables to execute at the same time
« We say that the sequences of instructions are in mutual
exclusions

Definition: a critical section is a section of code in mutual

exclusion
 Critical sections execute entirely one after the other
* We say that a critical section executes atomically

A critical section is often in mutual exclusion with itself
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Implementation of mutual exclusion
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Mutex: a lock in mutual exclusion
« Two possible states: busy or free

« At each time, only one thread can own (have marked as busy)

the mutex

A mutex provides two operations

« Lock acquisition: waits if the lock is busy and then changes its

state from free to busy

 Lock release: marks the lock as free

The two operations seem to execute atomically
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Implementation of mutual exclusion

m |Implementation:

 pthread mutex lock: acquire a mutex
 pthread mutex unlock:release a mutex

int balance = 1000;

pthread mutex t m = PTHREAD MUTEX INITIALIZER;

Thread 1

void credit ()
pthread mutex lock (&m);

int tmp = balance;
tmp = tmp + 100;
balance = tmp;

pthread mutex unlock (&m) ;
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Thread 2

void debit () {

pthread mutex lock (&m);

int tmp = balance;
tmp = tmp - 1;
balance = tmp;

pthread mutex unlock (&m) ;
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Monitor

m Allows a thread to wait for a certain condition to become true
* Built with a mutex and a variable condition
char* msg = NULL;

pthread mutex t m = PTHREAD MUTEX INITIALIZER;
pthread cond t ¢ = PTHREAD COND INITIALIZER;

Thread 1 Thread 2
volid send () { void recv () {
pthread mutex lock (&m); pthread mutex lock (&m);
msg = "Hello!"; whille (msg == NULL)
pthread cond signal (&c); pthread cond wailt (&c, &m);
pthread mutex unlock (&m) ; printf ("Message: %s\n", msqg);
} pthread mutex unlock (&m);

}
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Monitor

m Allow a thread to wait for a certain condition to become true
* Built with a mutex and a variable condition

m Interface
 Release mutex, sleep on cond, and re-acquire mutex
pthread cond wailt (&cond, &mutex)

 Wake up one thread that sleeps on cond
pthread cond signal (&cond) :

« Wake up all the threads that sleep on cond
pthread cond broadcast (&cond) :
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To take away

m Thread life cycle
 pthread create: create a thread
 pthread self: return the thread identifier
« pthread exit:quita thread
* pthread join: wait for the termination of a thread

m  Synchronization
* pthread mutex lock: take alock
 pthread mutex unlock:release a lock
 pthread cond wait: wait on a condition variable
« pthread cond signal:wake up a thread that waits on a
condition variable
 pthread cond broadcast: wake up all the threads that walt

on a condition variable
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