18.1

18.2

18

Believable Dead Reckoning
for Networked Games

Curtiss Murphy

Alion Science and Technology

Introduction

Your team’s producer decides that it’s time to release a networked game, saying
“We can publish across a network, right?” Bob kicks off a few internet searches
and replies, “Doesn’t look that hard.” He dives into the code, and before long,
Bob is ready to begin testing. Then, he stares in bewilderment as the characters
jerk and warp across the screen and the vehicles hop, bounce, and sink into the
ground. Thus begins the nightmare that will be the next few months of Bob’s life,
as he attempts to implement dead reckoning “‘just one more tweak” at a time.

This gem describes everything needed to add believable, stable, and efficient
dead reckoning to a networked game. It covers the fundamental theory, compares
algorithms, and makes a case for a new technique. It explains what’s tricky about
dead reckoning, addresses common myths, and provides a clear implementation
path. The topics are demonstrated with a working networked game that includes
source code. This gem will help you avoid countless struggles and dead ends so
that you don’t end up like Bob.

Fundamentals

Bob isn’t a bad developer; he just made some reasonable, but misguided, as-
sumptions. After all, the basic concept is pretty straight forward. Dead reckoning
is the process of predicting where an actor is right now by using its last known
position, velocity, and acceleration. It applies to almost any type of moving actor,
including cars, missiles, monsters, helicopters, and characters on foot. For each

307

308 18. Believable Dead Reckoning for Networked Games

remote actor being controlled somewhere else on the network, we receive up-
dates about its kinematic state that include its position, velocity, acceleration,
orientation, and angular velocity. In the simplest implementation, we take the last
position we received on the network and project it forward in time. Then, on the
next update, we do some sort of blending and start the process all over again.
Bob is right that the fundamentals aren’t that complex, but making it believable is
a different story.

Myth Busting—Ground Truth

Let’s start with the following fact: there is no such thing as ground truth in a
networked environment. “Ground truth” implies that you have perfect
knowledge of the state of all actors at all times. Surely, you can’t know the
exact state of all remote actors without sending updates every frame in a zero
packet loss, zero latency environment. What you have instead is your own
perceived truth. Thus, the goal becomes believable estimation, as opposed to
perfect re-creation.

Basic Math

To derive the math, we start with the simplest case: a new actor comes across the
network. In this case, one of our opponents is driving a tank, and we received our
first kinematic state update as it came into view. From here, dead reckoning is a
straightforward linear physics problem, as described by Aronson [1997]. Using
the values from the message, we put the vehicle at position P{, and begin moving
it at velocity V{ with acceleration Afj, as shown in Figure 18.1. The dead-
reckoned position Q, at a specific time 7 is calculated with the equation

Q,=P; +V5T+%A’OT2.

Figure 18.1. The first update is simple.

]

(

es 18.2 Fundamentals 309

@
//
Y

Y‘VO

Figure 18.2. The next update creates two realities. The red line is the estimated path, and
the green curve is the actual path.

Continuing our scenario, the opponent saw us, slowed his tank, and took a
hard right. Soon, we receive a message updating his kinematic state. At this
point, we have conflicting realities. The first reality is the position Q, where we
guessed he would be using the previous formula. The second reality is where he
actually went, our new P}, which we refer to as the last known state because it’s b
the last thing we know to be correct. This dual state is the beginning of Bob’s %
nightmares. Since there are two versions of each value, we use the prime notation 1
(e.g., P¢) to indicate the last known, as shown in Figure 18.2.

To resolve the two realities, we need to create a believable curve between ‘
where we thought the tank would be, and where we estimate it will be in the fu- J
ture. Don’t bother to path the remote tank through its last known position, Pj.
Instead, just move it from where it is now, P,, to where we think it is supposed to
be in the future, P,.

Myth Busting—Discontinuities Are Not Minor

The human brain is amazing at recognizing patterns [Koster 2005] and, more ‘
importantly, changes in patterns, such as when the tiniest piece of fuzz moves
past our peripheral vision. What this means is that players will notice subtle ‘;‘
discontinuities in a vehicle path long before they realize the vehicle is in the
wrong location. Therefore, discontinuities such as hops, warps, wobbles, and ‘
shimmies are the enemy.

18. Believable Dead Reckoning for Networked Games

18.3 Pick an Algorithm, Any Algorithm

If you crack open any good 3D math textbook, you’ll find a variety of algorithms
for defining a curve. Fortunately, we can discard most of them right away be-
cause they are too CPU intensive or are not appropriate (e.g., B-splines do not
pass through the control points). For dead reckoning, we have the additional re-
quirement that the algorithm must work well for a single segment of a curve
passing through two points: our current location P, and the estimated future loca-
tion P,. Given all these requirements, we can narrow the selection down to a few
types of curves: cubic Bézier splines, Catmull-Rom splines, and Hermite curves
[Lengyel 2004, Van Verth and Bishop 2008].

These curves perform pretty well and follow smooth, continuous paths.
However, they also tend to create minor repetitive oscillations. The oscillations
are relatively small, but noticeable, especially when the actor is making a lot of
changes (e.g., moving in a circle). In addition, the oscillations tend to become
worse when running at inconsistent frame rates or when network updates don’t
come at regular intervals. In short, they are too wiggly.

Projective Velocity Blending

Let’s try a different approach. Our basic problem is that we need to resolve two
realities (the current P, and the last known Pj). Instead of creating a spline seg-
ment, let’s try a straightforward blend. We create two projections, one with the
current and one with the last known kinematic state. Then, we simply blend the
two together using a standard linear interpolation (lerp). The first attempt looks
like this:

1 .
P, =P, +V,T, + EA'OT,2 (projecting from where we were),

1
P =P, + V(T + EA'OT,2 (projecting from last known),

Q,=P,+(P.-P,)T (combined).

This gives Q,, the dead-reckoned location at a specified time. (Time values
such as T, and T are explained in Section 18.4.) Note that both projection equa-
tions above use the last known value of acceleration Aj. In theory, the current
projection P, should use the previous acceleration A, to maintain C* continuity.
However, in practice, A, converges to the true path much quicker and reduces
oscillation.

18.3 Pick an Algorithm, Any Algorithm

311

This technique actually works pretty well. It is simple and gives a nice curve
between our points. Unfortunately, it has oscillations that are as bad as or worse
than the spline techniques. Upon inspection, it turns out that with all of these
techniques, the oscillations are caused by the changes in velocity (V, and V).
Maybe if we do something with the velocity, we can reduce the oscillations. So,
let’s try it again, with a tweak. This time, we compute a linear interpolation be-
tween the old velocity V, and the last known velocity V7 to create a new blended

velocity V,. Then, we use this to project forward from where we were.
The technique, projective velocity blending, works like this:

V=V, +(Vy V)T
1 ’ 2
P, =P, +V,T, +EA0T,

P =P, +VIT +%A’OT,2

Qr =Pz +(Prl_Pt)f’

(velocity blending),

(projecting from where we were),

(projecting from last known),

(combined).

And the red lines in Figure 18.3 show what it looks like in action.

O¥

Figure 18.3. Dead reckoning with projective velocity blending shown in red.

912 18. Believable Dead Reckoning for Networked Games

In practice, this works out magnificently! The blended velocity and change
of acceleration significantly reduce the oscillations. In addition, this technique is
the most forgiving of both inconsistent network update rates and changes in
frame rates.

Prove It!

So it sounds good in theory, but let’s get some proof. We can perform a basic test
by driving a vehicle in a repeatable pattern (e.g., a circle). By subtracting the real
location from the dead-reckoned location, we can determine the error. The imag-
es in Figure 18.4 and statistics in Table 18.1 show the clear result. The projective
velocity blending is roughly five to seven percent more accurate than cubic Bé-
zier splines. That ratio improves a bit more when you can’t publish acceleration.
If you want to test it yourself, the demo application on the website has implemen-
tations of both projective velocity blending and cubic Bézier splines.

Figure 18.4. Cubic Bézier splines (left) versus projective velocity blending (right), with
acceleration (top) and without acceleration (bottom).

18.4 Time forT

Update Rate Cubic Bézier Projective Velocity | Improvement
(DR Error) (DR Error)

1 update/sec 1.5723 m 1.4584 m 7.24% closer

3 updates/sec 0.1041 m 0.1112 m 6.38% closer

5 updates/sec 0.0574 m 0.0542 m 5.57% closer

18.4

Table 18.1. Improvement using projective velocity blending. Deck-reckoning (DR) error
is measured in meters.

As a final note, if you decide to implement a spline behavior instead of pro-
jective velocity blending, you might consider the cubic Bézier splines [Van Verth
and Bishop 2008]. They are slightly easier to implement because the control
points can simply be derived from the velocities V, and V. The source code on
the website includes a full implementation.

TimeforT

So far, we’ve glossed over time. That’s okay for an introduction, but, once you
begin coding, the concept of time gets twisted up in knots. So, let’s talk about T.

What Time Is It?

The goal is to construct a smooth path that an actor can follow between two mo-
ments in time 7, and 7;. These two times mark the exact beginning and end of the
curve and are defined by locations P, and P/, respectively. The third time 7, is
how much time has elapsed since 7,. The final time 7 represents how far the ac-
tor has traveled along the path as a normalized value, with 0.0 < 7<1.0.

T, is easy. It’s the time stamp when the last known values were updated. Ba-
sically, it’s “now” at the time of the update. If you’ve seen the movie Spaceballs,
then 7} is “now, now.” When we process a new network update, we mark 7, as
now and set 7, back to zero. The slate is wiped clean, and we start a whole new
curve, regardless of where we were.

If T, is now, then 7) must be in the future. But how far into the future, 7',
should the projection go? Well, if we knew that the actor updates were coming at
regular intervals, then we could just use the inverse update rate. So, for three up-
dates per second, 7, =0.333s. Even though network updates won’t always be
perfectly spaced out, it still gives a stable and consistent behavior. Naturally, the

314 18. Believable Dead Reckoning for Networked Games

update rate varies significantly depending on the type of game, the network con-
ditions, and the expected actor behavior. As a general rule of thumb, an update
rate of three per second looks decent and five or more per second looks great.

Time to Put It Together

From an implementation perspective, normalized time values from zero to one
aren’t terribly useful. In many engines, you typically get a time T, since the last
frame. We can easily add this up each frame to give the total time since the last
update T,. Once we know 7, we can compute our normalized time T as follows:

T, <71, +7T;
plr
N

Now we have all the times we need to compute the projective velocity blend-
ing equations. That leaves just one final wrinkle in time. It happens when we go
past T, (i.e., T, > T). This is a very common case that can happen if we miss an
update, have any bit of latency, or even have minor changes in frame rate. From
earlier,

f‘i} Q,=P,+(P,’—P;)f’.
Because 7" is clamped at one, the P, drops out, leaving the original equation

Q, =P, +ViT, +%A'0Tf.

The math simplifies quite nicely and continues to work for any value of T>1.0.

Just in Time Notes

Here are a few tips to consider:

m Due to the nature of networking, you can receive updates at any time, early
or late. In order to maintain C' continuity, you need to calculate the instanta-
neous velocity between this frame’s and the last frame’s dead-reckoned posi-
tion, (P, —P,_,)/T;. When you get the next update and start the new curve,
use this instantaneous velocity for V,. Without this, you will see noticeable
changes in velocity at each update.

18.5 Publish or Perish

315

18.5

m Actors send updates at different times based on many factors, including crea-
tion time, behavior, server throttling, latency, and whether they are moving.
Therefore, track the various times separately for each actor (local and re-
mote).

m If deciding your publish rate in advance is problematic, you could calculate a
run-time average of how often you have been receiving network updates and
use that for 7,. This works okay but is less stable than a predetermined rate.

m In general, the location and orientation get updated at the same time. Howev-
er, if they are published separately, you’ll need separate time variables for
each.

m Itis possible to receive multiple updates in a single frame. In practice, let the
last update win. For performance reasons, perform the dead reckoning calcu-
lations later in the game loop, after the network messages are processed. Ide-
ally, you will run all the dead reckoning in a single component that can split
the work across multiple worker threads.

m For most games, it is not necessary to use time stamps to sync the clocks be-
tween clients/servers in order to achieve believable dead reckoning.

Publish or Perish

So far, the focus has been on handling network updates for remote actors. How-
ever, as with most things, garbage in means garbage out. Therefore, we need to
take a look at the publishing side of things. In this section, forget about the actors
coming in over the network and instead focus on the locally controlled actors.

When to Publish?

Let’s go back and consider the original tank scenario from the opponent’s per-
spective. The tank is now a local actor and is responsible for publishing updates
on the network. Since network bandwidth is a precious resource, we should re-
duce traffic if possible. So the first optimization is to decide when we need to
publish. Naturally, there are times when players are making frequent changes in
direction and speed and five or more updates per second are necessary. However,
there are many more times when the player’s path is stable and easy to predict.
For instance, the tank might be lazily patrolling, might be heading back from a
respawn, or even sitting still (e.g., the player is chatting).

The first optimization is to only publish when necessary. Earlier, we learned
that it is better to have a constant publish rate (e.g., three per second) because it
keeps the remote dead reckoning smooth. However, before blindly publishing
every time it’s allowed (e.g., every 0.333 s), we first check to see if it’s neces-

316 18. Believable Dead Reckoning for Networked Games

bool ShouldForceUpdate (const Vec3& pos, const Vec3é& BeE)
{
bool forceUpdateResult = false;
if (enoughTimeHasPassed)
{
Vec3 posMoved = pos — mCurDeadReckoned Pos;

Vec3 rotTurned = rot - mCurDeadReckoned Rot;

if ((posMoved.length2() > mPosThreshold?) ||
(rotTurned.length2 () > mRotThreshold2))

// Rot.length2 is a fast approx (i.e., not a quaternion).

forceUpdateResult = true;

// ... Can use other checks such as velocity and accel.

return (forceUpdateResult);

e Listing 18.1. Publish—is an update necessary?

sary. To figure that out, we perform the dead reckoning as if the vehicle was re-
mote. Then, we compare the real and the dead-reckoned states. If they differ by a
set threshold, then we go ahead and publish. If the real position is still really
close to the dead-reckoned position, then we hold off. Since the dead reckoning
algorithm on the remote side already handles 7, > T}, it’ll be fine if we don’t up-
date right away. This simple check, shown in Listing 18.1, can significantly re-
duce network traffic.

What to Publish

Clearly, we need to publish each actor’s kinematic state, which includes the posi-
tion, velocity, acceleration, orientation, and angular velocity. But there are a few
things to consider. The first, and least obvious, is the need to separate the actor’s
real location and orientation from its last known location and orientation. Hope-
fully, your engine has an actor property system [Campbell 2006] that enables you
to control which properties get published. If so, you need to be absolutely sure

18.5 Publish or Perish

317

you never publish (or receive) the actual properties used to render location and
orientation. If you do, the remote actors will get an update and render the last
known values instead of the results of dead reckoning. It’s an easy thing to over-
look and results in a massive one-frame discontinuity (a.k.a. blip). Instead, create
publishable properties for the last known values (i.e., location, velocity, accelera-
tion, orientation, and angular velocity) that are distinct from the real values.

The second consideration is partial actor updates, messages that only contain
a few actor properties. To obtain believable dead reckoning, the values in the
kinematic state need to be published frequently. However, the rest of the actor’s
properties usually don’t change that much, so the publishing code needs a way to
swap between a partial and full update. Most of the time, we just send the kine-
matic properties. Then, as needed, we send other properties that have changed
and periodically (e.g., every ten seconds) send out a heartbeat that contains eve-
rything. The heartbeat can help keep servers and clients in sync.

Myth Busting—Acceleration Is Not Always Your Friend

In the quest to create believable dead reckoning, acceleration can be a huge
advantage, but be warned that some physics engines give inconsistent (a.k.a.
spiky) readings for linear acceleration, especially when looked at in a single
frame as an instantaneous value. Because acceleration is difficult to predict
and is based on the square of time, it can sometimes make things worse by in-
troducing noticeable under- and overcompensations. For example, this can be
a problem with highly jointed vehicles for which the forces are competing on
a frame-by-frame basis or with actors that intentionally bounce or vibrate.

With this in mind, the third consideration is determining what the last known
values should be. The last known location and orientation come directly from the
actor’s current render values. However, if the velocity and acceleration values
from the physics engine are giving bad results, try calculating an instantaneous
velocity and acceleration instead. In extreme cases, try blending the velocity over
two or three frames to average out some of the sharp instantaneous changes.

Publishing Tips

Below are some final tips for publishing:

m Published values can be quantized or compressed to reduce bandwidth
[Sayood 2006].

318

18. Believable Dead Reckoning for Networked Games

m Ifan actor isn’t stable at speeds near zero due to physics, consider publishing
a zero velocity and/or acceleration instead. The projective velocity blend will
resolve the small translation change anyway.

m If publishing regular heartbeats, be sure to sync them with the partial updates
to keep the updates regular. Also, try staggering the heartbeat time by a ran-
dom amount to prevent clumps of full updates caused by map loading.

m Some types of actors don’t really move (e.g., a building or static light). Im-
prove performance by using a static mode that simply teleports actors.

m In some games, the orientation might matter more than the location, or vice
versa. Consider publishing them separately and at different rates.

m To reduce the bandwidth using ShouldForceUpdate (), you need to dead
reckon the local actors in order to check against the threshold values.

m Evaluate the order of operations in the game loop to ensure published values
are computed correctly. An example order might include: handle user input,
tick local (process incoming messages and actor behaviors), tick remote (per-
form dead reckoning), publish dead reckoning, start physics (background for
next frame), update cameras, render, finish physics. A bad order will cause
all sorts of hard-to-debug dead reckoning anomalies.

m There is an optional damping technique that can help reduce oscillations
when the acceleration is changing rapidly (e.g., zigzagging). Take the current
and previous acceleration vectors and normalize them. Then, compute the dot
product between them and treat it as a scalar to reduce the acceleration before
publishing (shown in the ComputeCurrentVelocity() function in List-
ing 18.2).

m Acceleration in the up/down direction can sometimes cause floating or sink-
ing. Consider publishing a zero instead.

The Whole Story
When all the pieces are put together, the code looks roughly like Listing 18.2.

" void OnTickRemote (const TickMessage& tickMessage)

{
// This is for local actors, but happens during Tick Remote.
double elapsedTime = tickMessage.GetDeltaSimTime ();
bool forceUpdate = false, fullUpdate = false;

Il

Vec3 rot GetRotation() ;
Vec3 pos = GetTranslation();

18.5 Publish or Perish

319

{

mSecsSincelastUpdateSent += elapsedTime;
mTimeUntilHeartBeat —-= elapsedTime;

// Have to update instant velocity even if we don't publish.
ComputeCurrentVelocity (elapsedTime, pos, rot);

if ((mTimeUntilHeartBeat <= 0.0F) || (IsFullUpdateNeeded()))
{

fullUpdate = true;

forceUpdate = true;

¥

else

{

forceUpdate ShouldForceUpdate (pos, rot);

fullUpdate = (mTimeUntilHeartBeat < HEARTBEAT TIME * 0.1F);

if (forceUpdate)

SetLastKnownValuesBeforePublish (pos, rot);

if (fullUpdate)

{
mTimeUntilHeartBeat = HEARTBEAT TIME; // +/- random offset
NotifyFullActorUpdate () ;

}

else

{
NotifyPartialActorUpdate () ;

mSecsSincelastUpdateSent = 0.0F;

void SetLastKnownValuesBeforePublish (const Vec3& pos, const Vec3s& rot)

SetLastKnownTranslation (pos) ;

SetLastKnownRotation (rot) ;

SetLastKnownVelocity (ClampTinyValues (GetCurrentVel ())) ;
SetLastKnownAngularVel (ClampTinyValues (GetCurrentAngularvVel ())) ;

F————’

320 18. Believable Dead Reckoning for Networked Games

// (OPTIONAL!) ACCELERATION dampen to prevent wild swings. ’ |
// Normalize current accel. Dot with accel from last update. Use
// the product to scale our current Acceleration.

Vec3 curAccel = GetCurrentAccel ();

curAccel.normalize () ;

float accelScale = curAccel * mAccelOfLastPublish;
mAccelOfLastPublish = curAccel; // (pre-normalized) [
SetLastKnownAccel (GetCurrentAccel () * Max (0.0F, accelScale));

void ComputeCurrentVelocity(float deltaTime, const Vec3& pos,
const Vec3& rot)

if ((mPrevFrameTime > 0.0F) && (mLastPos.length2() > 0.0F))

Vec3 prevComputedLinearVel = mComputedLinearVel;

i) Vec3 distanceMoved = pos - mLastPos;

L i, mComputedLinearVel = distanceMoved / mPrevFrameTime;
I ClampTinyValues (mComputedLinearVel) ;

o // accel = the instantaneous differential of the velocity.

i Vec3 deltaVel = mComputedLinearVel - prevComputedLinearVel;

Vec3 computedAccel = deltaVel / mPrevDeltaFrameTime;
computedAccel.z () = 0.0F; // up/down accel isn't always helpful.

SetCurrentAcceleration (computedAccel) ;
SetCurrentVelocity (mComputedLinearVel) ;
}
mLastPos = pos;
\ mPrevFrameTime = deltaTime;

Listing 18.2. Publish—the whole story.

18.6 Ground Clamping

No matter how awesome your dead reckoning algorithm becomes, at some point,
the problem of ground clamping is going to come up. The easiest way to visual-
ize the problem is to drop a vehicle off of a ledge. When it impacts the ground,

nes

18.6 Ground Clamping

321

the velocity is going to project the dead-reckoned position under the ground. Few
things are as disconcerting as watching a tank disappear halfway into the dirt. As
an example, the demo on the website allows mines to fall under ground.

Can We Fix It?

As with many dead reckoning problems, there isn’t one perfect solution. Howev-
er, some simple ground clamping can make a big difference, especially for far
away actors. Ground clamping is adjusting an actor’s vertical position and orien-
tation to make it follow the ground. The most important thing to remember about
ground clamping is that it happens after the rest of the dead reckoning. Do every-
thing else first.

The following is one example of a ground clamping technique. Using the
final dead reckoned position and orientation, pick three points on the bounding
surface of the actor. Perform a ray cast starting above those points and directed
downward. Then, for each point, check for hits and clamp the final point if ap-
propriate. Compute the average height H of the final points Q,, Q;, and Q,, and
compute the normal N of the triangle through those points as follows:

_ (Qo). +(Q)). +(Q>),
3

N:(Ql _QO)X(Q2 _QO)'

Use H as the final clamped ground height for the actor and use the normal to de-
termine the final orientation. While not appropriate for all cases, this technique is
fast and easy to implement, making it ideal for distant objects.

H

Other Considerations

m Another possible solution for this problem is to use the physics engine to
prevent interpenetration. This has the benefit of avoiding surface penetration
in all directions, but it can impact performance. It can also create new prob-
lems, such as warping the position, the need for additional blends, and sharp
discontinuities.

m Another way to minimize ground penetration is to have local actors project
their velocities and accelerations into the future before publishing. Then,
damp the values as needed so that penetration will not occur on remote actors
(a method known as predictive prevention). This simple trick can improve
behavior in all directions and may eliminate the need to check for interpene-
tration.

18. Believable Dead Reckoning for Networked Games

® When working with lots of actors, consider adjusting the ground clamping
based on distance to improve performance. You can replace the three-point
ray multicast with a single point and adjust the height directly using the inter-
section normal for orientation. Further, you can clamp intermittently and use 1
the offset from prior ground clamps.

m For character models, it is probably sufficient to use single-point ground
clamping. Single-point clamping is faster, and you don’t need to adjust the
orientation.

m Consider supporting several ground clamp modes. For flying or underwater
actors, there should be a “no clamping” mode. For vehicles that can jump,
consider an “only clamp up” mode. The last mode, “always clamp to
ground,” would force the clamp both up and down.

18.7 Orientation

Orientation is a critical part of dead reckoning. Fortunately, the basics of orienta-
tion are similar to what was discussed for position. We still have two realities to
g resolve: the current drawn orientation and the last known orientation we just re-
i ceived. And, instead of velocity, there is angular velocity. But that’s where the
LTI similarities end.

e Hypothetically, orientation should have the same problems that location had.
In reality, actors generally turn in simpler patterns than they move. Some actors
turn slowly (e.g., cars) and others turn extremely quickly (e.g., characters). Either
way, the turns are fairly simplistic, and oscillations are rarely a problem. This
means C' and C” continuity is less important and explains why many engines
don’t bother with angular acceleration.

Myth Busting—Quaternions

Your engine might use HPR (heading, pitch, roll), XYZ vectors, or full rota-
tion matrices to define an orientation. However, when it comes to dead reck-
oning, you’ll be rotating and blending angles in three dimensions, and there is
simply no getting around quaternions [Hanson 2006]. Fortunately, quaterni-
ons are easier to implement than they are to understand [Van Verth and Bish-
op 2008]. So, if your engine doesn’t support them, do yourself a favor and
code up a quaternion class. Make sure it has the ability to create a quaternion
from an axis/angle pair and can perform spherical linear interpolations
(slerp). A basic implementation of quaternions is provided with the demo
code on the website.

18.7 Orientation 323

Vec3 angVelAxis (mLastKnownAngularVelocityVector) ;

// normalize () returns length.
float angVelMagnitude = angVelAxis.normalize () ;

// Rotation around the axis is magnitude of ang vel * time.
float rotationAngle = angVelMagnitude * actualRotationTime;
Quat rotationFromAngVel (rotationAngle, angVelAxis);

Listing 18.3. Computing rotational change.

With this in mind, dead reckoning the orientation becomes pretty simple:
project both realities and then blend between them. To project the orientation, we
need to calculate the rotational change from the angular velocity. Angular veloci-
ty is just like linear velocity; it is the amount of change per unit time and is usual-
ly represented as an axis of rotation whose magnitude corresponds to the rate of
rotation about that axis. It typically comes from the physics engine, but it can be
calculated by dividing the change in orientation by time. In either case, once you
have the angular velocity vector, the rotational change R}, is computed as shown
in Listing 18.3.

If you also have angular acceleration, just add it to rotationAngle. Next,
compute the two projections and blend using a spherical linear interpolation. Use
the last known angular velocity in both projections, just as the last known accel-
eration was used for both equations in the projective velocity blending technique:

Ry = quat(Rp.. Ty, Rl) (impact of angular velocity),

R, =R\R, (rotated from where we were),
R/ =R\R} (rotated from last known),
S, =slerp(7, R,,R!) (combined).

This holds true for 7' <1.0. Once again, 7' is clamped at one, so the math simpli-
fies when 7' >1.0:

S, =Ry R§ (rotated from last known).

324 18. Believable Dead Reckoning for Networked Games

Two Wrong Turns Don’t Make a Right

This technique may not be sufficient for some types of actors. For example, the
orientation of a car and its direction of movement are directly linked. Unfortu-
nately, the dead-reckoned version is just an approximation with two sources of
error. The first is that the orientation is obviously a blended approximation that
will be behind and slightly off. But, even if you had a perfect orientation, the re-
mote vehicle is following a dead-reckoned path that is already an approximation.
Hopefully, you can publish fast enough that neither of these becomes a problem.
If not, you may need some custom actor logic that can reverse engineer the orien-
tation from the dead-reckoned values; that is, estimate an orientation that would
make sense given the dead-reckoned velocity. Another possible trick is to publish
multiple points along your vehicle (e.g., one at front and one in back). Then, dead
reckon the points and use them to orient the vehicle (e.g., bind the points to a
joint).

¢ 18.8 Advanced Topics

This last section introduces a variety of advanced topics that impact dead reckon-
. ing. The details of these topics are generally outside the scope of this gem, but, in
;;“j ik each case, there are specific considerations that are relevant to dead reckoning.

}

i

Integrating Physics with Dead Reckoning

Some engines use physics for both the local and the remote objects. The idea is to
improve believability by re-creating the physics for remote actors, either as a re-
placement for or in addition to the dead reckoning. There are even a few tech-
niques that take this a step further by allowing clients to take ownership of actors
so that the remote actors become local actors, and vice versa [Feidler 2009]. In
“either of these cases, combining physics with dead reckoning gets pretty com-
plex. However, the take away is that even with great physics, you’ll end up with
cases where the two kinematic states don’t perfectly match. At that point, use the
techniques in this gem to resolve the two realities.

Server Validation

Dead reckoning can be very useful for server validation of client behavior. The
server should always maintain a dead-reckoned state for each player or actor.
With each update from the clients, the server can use the previous last known
state, the current last known state, and the ongoing results of dead reckoning as

18.8 Advanced Topics

325

input for its validation check. Compare those values against the actor’s expected
behavior to help identify cheaters.

Who Hit Who?

Imagine player 4 (local) shoots a pistol at player B (remote, slow update). If im-
plemented poorly, player 4 has to “lead” the shot ahead or behind player B based
on the ping time to the server. A good dead reckoning algorithm can really help
here. As an example, client 4 can use the current dead-reckoned location to de-
termine that player B was hit and then send a hit request over to the server. In
turn, the server can use the dead-reckoned information for both players, along
with ping times, to validate that client 4’s hit request is valid from client 4’s per-
spective. This technique can be combined with server validation to prevent
abuse. For player 4, the game feels responsive, seems dependent on skill, and
plays well regardless of server lag.

Articulations

Complex actors often have articulations, which are attached objects that have
their own independent range of motion and rotation. Articulations can generally
be lumped into one of two groups: real or fake. Real articulations are objects
whose state has significant meaning, such as the turret that’s pointing directly at
you! For real articulations, use the same techniques as if it were a full actor. For-
tunately, many articulations, such as turrets, can only rotate, which removes the
overhead of positional blending and ground clamping. Fake articulations are
things like tires and steering wheels, where the state is either less precise or
changes to match the dead-reckoned state. For those, you may need to implement
custom behaviors, such as for turning the front tires to approximate the velocity
calculated by the dead reckoning.

Path-Based Dead Reckoning

Some actors just need to follow a specified path, such as a road, a predefined
route, or the results of an artificial intelligence plan. In essence, this is not much
different from the techniques described above. Except, instead of curving be-
tween two points, the actor is moving between the beginning and end of a speci-
fied path. If the client knows how to recreate the path, then the actor just needs to
publish how far along the path it is, 7', as well as how fast time is changing, 7.
When applicable, this technique can significantly reduce bandwidth. Moyer and
Speicher [2005] have a detailed exploration of this topic.

18. Believable Dead Reckoning for Networked Games

Delayed Dead Reckoning

The first myth this gem addresses is that there is no ground truth. However, one
technique, delayed dead reckoning, can nearly re-create it, albeit by working in
the past. With delayed dead reckoning, the client buffers network updates until it
has enough future data to re-create a path. This eliminates the need to project into
the future because the future has already arrived. It simplifies to a basic curve
problem. The upside is that actors can almost perfectly re-create the original path.
The obvious downside is that everything is late, making it a poor choice for most
real-time actors. This technique can be useful when interactive response time is
not the critical factor, such as with distant objects (e.g., missiles), slow-moving
system actors (e.g., merchant NPCs), or when playing back a recording. Note that
delayed dead reckoning can also be useful for articulations.

Subscription Zones

Online games that support thousands of actors sometimes use a subscription-
zoning technique to reduce rendering time, network traffic, and CPU load [Cado
2007]. Zoning is quite complex but has several impacts on dead reckoning. One
significant difference is the addition of dead reckoning modes that swap between
simpler or more complex dead reckoning algorithms. Actors that are far away or
unimportant can use a low-priority mode with infrequent updates, minimized
ground clamping, quantized data, or simpler math and may take advantage of
delayed dead reckoning. The high-priority actors are the only ones doing frequent
updates, articulations, and projective velocity blending. Clients are still responsi-
ble for publishing normally, but the server needs to be aware of which clients are
receiving what information for which modes and publish data accordingly.

18:9 Conclusion

Dead reckoning becomes a major consideration the moment your game becomes
networked. Unfortunately, there is no one-size-fits-all technique. The games in-
dustry is incredibly diverse and the needs of a first-person MMO, a top-down
RPG, and a high-speed racing game are all different. Even within a single game,
different types of actors might require different techniques.

The underlying concepts described in this gem should provide a solid foun-
dation for adding dead reckoning to your own game regardless of the genre. Even
so, dead reckoning is full of traps and can be difficult to debug. Errors can occur
anywhere, including the basic math, the publishing process, the data sent over the

es Acknowledgements 327

network, or plain old latency, lag, and packet issues. Many times, there are mul-
tiple problems going on at once and they can come from unexpected places, such
as bad values coming from the physics engine or uninitialized variables. When
you get stuck, refer back to the tips in each section and avoid making assump-
tions about what is and is not working. Believable dead reckoning is tricky to
achieve, but the techniques in this gem will help make the process as easy as it
can be.

Acknowledgements

Special thanks to David Guthrie for all of his contributions.

References

[Aronson 1997] Jesse Aronson. “Dead Reckoning: Latency Hiding for Networked
Games.” Gamasutra, September 19, 1997. Available at http://www.gamasutra.
com/view/feature/3230/dead_reckoning_latency hiding for .php.

[Cado 2007] Olivier Cado. “Propagation of Visual Entity Properties Under Bandwidth
Constraints.” Gamasutra, May 24, 2007. Available at http://www.gamasutra.com/
view/feature/1421/propagation_of visual_entity .php.

[Campbell 2006] Matt Campbell and Curtiss Murphy. “Exposing Actor Properties Using
Nonintrusive Proxies.” Game Programming Gems 6, edited by Michael Dick-
heiser. Boston: Charles River Media, 2006.

[Feidler 2009] Glenn Fiedler. “Drop in COOP for Open World Games.” Game Develop-
er’s Conference, 2009.

[Hanson 2006] Andrew Hanson. Visualizing Quaternions. San Francisco: Morgan
Kaufmann, 2006.

[Koster 2005] Raph Koster. A Theory of Fun for Game Design. Paraglyph Press, 2005.

[Lengyel 2004] Eric Lengyel. Mathematics for 3D Game Programming & Computer
Graphics, Second Edition. Hingham, MA: Charles River Media, 2004.

[Moyer and Speicher 2005] Dale Moyer and Dan Speicher. “A Road-Based Algorithm
for Dead Reckoning.” Interservice/Industry Training, Simulation, and Education
Conference, 2005.

[Sayood 2006] Khalid Sayood. Introduction to Data Compression, Third Edition. San
Francisco: Morgan Kaufmann, 2006.

328 18. Believable Dead Reckoning for Networked Games

[Van Verth and Bishop 2008] James Van Verth and Lars Bishop. Essential Mathematics
in Games and Interactive Applications: A Programmer’s Guide, Second Edition.
San Francisco: Morgan Kaufmann, 2008.

] |
~ 1
IR |
e N |
1 GameEngine
| |
H Gems 2
]:: |

Edited by Eric Lengyel

g LT

TEM-TSP - Médiathéque

