Institut
Mines-Télécom

GPU for Deep Learning

Optimized Matrix Multiplication

Elisabeth Brunet

$C=A B$

- Given two matrices A and B,

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{B}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 p} \\
b_{21} & b_{22} & \cdots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n p}
\end{array}\right) \\
& \mathbf{C}=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 p} \\
c_{21} & c_{22} & \cdots & c_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m p}
\end{array}\right)
\end{aligned}
$$

- Such that

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

- Matrices A, B and C in global memory
- Each thread calculates an element of C
- Each thread accesses
- to a whole line of A
- and a whole column of B
- Data access
non-aligned and scattered
- Coalescing problem
- Repeated data access

2) Tiled algorithm

- Iterative algorithm on sub-matrixes multiplication treated by a block fiting in shared memory

2) Tiled algorithm

- Iterative algorithm on sub-matrixes multiplication treated by a block fiting in shared memory

2) Tiled algorithm

- Iterative algorithm on sub-matrixes multiplication treated by a block fiting in shared memory
- Iteration in 4 steps :
(a) Cooperative loading of a data in tiles in shared memory
(b) Synchronization to ensure that data are loaded
(c) Calculation of partial results by threads on loaded data
(d) Synchronization before changing the data of the tiles for the next iteration

(a) Cooperative data loading

- Objective : change the access pattern

Global Memory

Global Memory
\rightarrow Regular access to global memory + Quick access once in shared memory !!!

(a) Cooperative data loading

- Sub-tiles of BLOCKSIZE*BLOCKSIZE elements
- BLOCKSIZE $=\operatorname{sqrt}(1024)=32$
- Each thread of the block loads (ie copy) an element from A and an element from B into the shared tiles

Thread 0 :

Shared tile B

(b) Synchronization !

- Once the barrier passed, the two sub-tiles are complete

Shared tile B

Shared tile A

(c) Partial result computation

- Multiplication of matrices on current tiles
- Accumulation in a scalar variable stored in a register

(d) Synchronization !

- Once the barrier passed, all the threads of the block have finished to compute and the two sub-tiles can be modified

Switch to the next tile

(a) Cooperative data loading

in the SAME shared tile
(b) Synchronization
(c) Accumulation of the partial result
(d) Synchronization

Final result

- Assignment of the result in the \mathbf{C} matrix remaining in global memory

Thread 0 :
temp_c affectation

To go further,

- Each partial result could be computed by another block
- Additional dimension on the grid to identify the tile to be treated
- Reduction of the partial results :
- Atomic operation for accumulation: atomicAdd
- Reduction on the GPU thanks to a kernel
- Reduction on the CPU

To go further,

- Each partial result could be computed by another block
- Additional dimension on the grid to identify the tile to be treated
- Reduction of the partial results :
- Atomic operation for accumulation: atomicAdd
- Reduction on the GPU thanks to a kernel
- Reduction on the CPU
- A lot of different optimizations and strategies
\rightarrow Field of research in itself

To go further,

- Each partial result could be computed by another block
- Additional dimension on the grid to identify the tile to be treated
- Reduction of the partial results :
- Atomic operation for accumulation: atomicAdd
- Reduction on the GPU thanks to a kernel
- Reduction on the CPU
- A lot of different optimizations and strategies
\rightarrow Field of research in itself
- Best algorithms in the cuBLAS library

Last detail : access to a matrix element

- Matrix organization
= one-dimensional vector column major
- Colum major required by cuBLAS
- Access to an element in 2 steps

1) Projection of the grid of threads on the matrix

- Line = blockIdx.y * blockDim. $y+$ threadIdx.y
- Column = blockldx. x * blockDim. x + threadIdx. x

2) Linearization in the data structure in one column-major dimension

Column-major order

- A[column * nbLineOfA+ line]
- Given macro IDX2C : \#define IDX2C(i,j,nb_rows) (((j)*(nb_rows))+(i))

Let's go to practise now !

