
Institut Mines-Télécom

GPU for Deep Learning

Optimized Matrix Multiplication

Elisabeth Brunet

2

C = AB
● Given two matrices A and B,

● Such that

 x

 x

 x

 x x x x

 x x x

 x

 x

 x

 x

A C

 x x

 x

 x

3

Thread 0 Thread 1

1)Basic algorithm
● Matrices A, B and C in global memory

● Each thread calculates an element of C

● Each thread accesses

● to a whole line of A

● and a whole column of B

● Data access

non-aligned and scattered

● Coalescing problem

● Repeated data access

 x

 x

 x

 x x x x

 x x x

 x

 x

 x

 x

A

B

C

 x x

est

 x

 x

5

2) Tiled algorithm
● Iterative algorithm

on sub-matrixes multiplication

treated by a block fiting in shared memory

A

6

2) Tiled algorithm
● Iterative algorithm

on sub-matrixes multiplication

treated by a block fiting in shared memory

7

2) Tiled algorithm
● Iterative algorithm

on sub-matrixes multiplication

treated by a block fiting in shared memory

● Iteration in 4 steps :

(a) Cooperative loading of a data in tiles in shared memory

(b) Synchronization to ensure that data are loaded

(c) Calculation of partial results by threads on loaded data

(d) Synchronization before changing the data of the tiles for the next iteration

9

Thread 0 Thread 1

(a) Cooperative data loading
● Objective : change the access pattern

A

B

Thread 0 Thread 1
→ Regular access to global memory
+ Quick access once in shared memory !!!

1
0

(a) Cooperative data loading
● Sub-tiles of BLOCKSIZE*BLOCKSIZE elements

● BLOCKSIZE = sqrt(1024) = 32

● Each thread of the block loads (ie copy)

an element from A

and an element from B

into the shared tiles

A

 x

 x

B

Shared tile A

Thread 0 :

 x

 x

Shared
tile B

BlockDim.x

BlockDim.y

1
1

(b) Synchronization !

● Once the barrier passed,

the two sub-tiles are complete

A

B

Shared
tile B

Shared tile A

1
2

(c) Partial result computation

● Multiplication of matrices on current tiles

● Accumulation in a scalar variable stored in a register

 x x

 x

 x

 x

Thread 0 :

Shared
Tile A

temp_c

Shared
tile B

1
3

(d) Synchronization !

● Once the barrier passed,

all the threads of the block have finished to compute

and the two sub-tiles can be modified

A

B

Shared
tile B

Shared tile A

1
4

Switch to the next tile
(a) Cooperative data loading

in the SAME shared tile

(b) Synchronization

(c) Accumulation of the partial result

 in local variable temp_c

(d) Synchronization

B

A

 x

 x

B

Shared tile A

Thread 0 :

 x

 x

Shared
tile B

1
5

Final result

● Assignment of the result in the C matrix remaining in
global memory

 x

temp_c

 x

C

affectation

Thread 0 :

1
6

To go further,

● Each partial result could be computed by another block

● Additional dimension on the grid to identify the tile to be treated

● Reduction of the partial results :

– Atomic operation for accumulation: atomicAdd

– Reduction on the GPU thanks to a kernel

– Reduction on the CPU

1
7

To go further,

● Each partial result could be computed by another block

● Additional dimension on the grid to identify the tile to be treated

● Reduction of the partial results :

– Atomic operation for accumulation: atomicAdd

– Reduction on the GPU thanks to a kernel

– Reduction on the CPU

● A lot of different optimizations and strategies

→ Field of research in itself

1
8

To go further,

● Each partial result could be computed by another block

● Additional dimension on the grid to identify the tile to be treated

● Reduction of the partial results :

– Atomic operation for accumulation: atomicAdd

– Reduction on the GPU thanks to a kernel

– Reduction on the CPU

● A lot of different optimizations and strategies

→ Field of research in itself

● Best algorithms in the cuBLAS library

1
9

Last detail :
access to a matrix element

● Matrix organization

= one-dimensional vector column major

– Colum major required by cuBLAS

● Access to an element in 2 steps

1) Projection of the grid of threads on the matrix

● Line = blockIdx.y * blockDim.y + threadIdx.y

● Column = blockIdx.x * blockDim.x + threadIdx.x

2) Linearization in the data structure

in one column-major dimension

● A[column * nbLineOfA+ line]

● Given macro IDX2C : #define IDX2C(i,j,nb_rows) (((j)*(nb_rows))+(i))

 X

2
0

Let's go to practise now !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

