
Institut Mines-Télécom

GPU for Deep Learning

GPU Memory Architecture

Elisabeth Brunet

2

GPU Memory Architecture

CPU and GPU memory spaces physically separated

● Explicit transferts between the two spaces
● Two entry points on the GPU

● Global and constant memories

Grid
Block

Shared MemoryShared Memory

ThreadThread

Global MemoryGlobal Memory

ThreadThread

Block
Shared MemoryShared Memory

ThreadThread ThreadThread

Constant MemoryConstant Memory

Registers

Host Host

3

GPU memory hierarchy

● On GPU, 4 levels of memory [+ texture memory]

A) Global memory [__device__]

B) Constant memory [__device__] __constant__

C) Shared memory [__device__] __shared__

D) Registers

Grid
Block

Shared MemoryShared Memory

ThreadThread

Global MemoryGlobal Memory

ThreadThread

Block
Shared MemoryShared Memory

ThreadThread ThreadThread

Constant MemoryConstant Memory

Registers

Host Host

4

A) Global Memory
● Large, high latency, no cache

● Data
● Accessible by all the threads of the grid
● Lifespan : as required by the application

● From host,
● Allocation/Free + copies in both ways

● Static declaration from the GPU with keyword __device__

5

Global memory management
● Allocation : cudaMalloc(void ** pointer, size_t nbytes)

● Desallocation : cudaFree(void* p)

● Cleaning : cudaMemset(void * p, int val, size_t nbytes)

● Copy of the data from host :
cudaMemcpy(void *dst, void *src,
 size_t nbytes,
 enum cudaMemcpyKind direction);

with enum cudaMemcpyKind
 ={cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToDevice}

6

Global Memory coalescing
● Multiple memory accesses

into a single transaction

● Uncoalesced load,

ie serialized memory access,

when memory accesses

● are not sequential

● are sparse

● are misaligned

7

B) Constant Memory

● For data that will not change over a kernel execution

● Read-only, pretty small memory, slow, cached
● The first read from constant memory costs one memory read from

global memory ; after, costs one read from the constant cache

● Cache for each multiprocessor very small

→ Optimized when warp of threads read same location

● Data accessible by all the threads of the grid

8

Constant memory management
● Declaration : __constant__ float buffer [size];

● Copy of the data from the host :

cudaError_t cudaMemcpytoSymbol

(const char * symbol,
 const void * src, size_t count ,
 size_t offset=0,
 enum cudaMemcpyKind)

with enum cudaMemcpyKind
 ={cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost,
 cudaMemcpyDeviceToDevice}

9

C) Shared Memory

● Keyword __shared__
● Separate space with very low latency

● Data
● Accessible by all threads of the same block
● Lifetime: kernel run

● Static allocation
● From the GPU device
● Static size given

at compile time (case a)

or at the kernel launch (case b)

// case a
__global__void myKernel(){

__shared__int shared[32];
 ...
}

// case b
__global__void myKernel(){

extern __shared__int s[];
 ...
}
int main() {
int size= numThreadsPerBlock* sizeof(int);
myKernel<<< dimGrid, dimBlock, size>>>();}

1
0

Shared memory management

● All operations on the device within a same kernel

● Static allocation from device : __shared__ int tab[4] ;

● Classic explicit initialization/modification in kernel

for (int i = 0 ; i< 4 ; i++) tab[i]=i ;

1
5

D) Registers
● Fast, only for one thread

● For local kernel variables
● Allocation of scalar variables in registers
● Allocation of arrays of more than 4 elements in the

global memory

● No specific keyword

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 15

