TELECOM
SudParis

mHE

Institut
Mines-Télécom

Parallel Reduction in CUDA

Elisabeth Brunet
Based on Mark Harris (Nvidia) talk

s Reduction : Naive algorithms

* Reduction by an only one thread

* An atomic operation in global memory

* Huge synchronization

SudParis
I D e =iie

Parallel Reduction <

NVIDIA.

« Tree-based approach used within each thread block

« Need to be able to use multiple thread blocks
« To process very large arrays
« To keep all multiprocessors on the GPU busy
« Each thread block reduces a portion of the array

« But how do we communicate partial results between
thread blocks?

TELECOM
SudParis

a3

Problem :
how sharing intermediate results

SudParis
I D e =iie

Il Problem: Global Synchronization >

NVIDIA.

« If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
« Global sync after each block produces its result
« Once all blocks reach sync, continue recursively

« But CUDA has no global synchronization. Why?

« Expensive to build in hardware for GPUs with high processor
count

« Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

« Solution: decompose into multiple kernels
« Kernel launch serves as a global synchronization point
« Kernel launch has negligible HW overhead, low SW overhead

TELECOM
SudParis

a3

Solution: Kernel Decomposition A

« Avoid global sync by decomposing computation
into multiple kernel invocations

8 blocks

Level 1:
1 block

« In the case of reductions, code for all levels is the
same
« Recursive kernel invocation

TELECOM
SudParis

3 Hi |

Problem : divergency

SudParis
I e =iie

Parallel Reduction: Interleaved Addressing @

NVIDIA.
Values 3|(5|-2|3|2(|7]0|11|0| 2
Step 1 Thread 1
Stride 1 IDs @J @/ @/

8 |5 (5|39 |7 |11|11| 2] 2

o ¢ &~

Values

Step 2 Thread

Stride 2 IDs

Values 8|54 |39 |7 13|11 2| 2
Step 3 Thread e
Stride 4 IDs

Values 8|5 (17|39 |7 [13|11| 2 | 2
Step 4 Thread /
Stride 8 IDs

Values [41 |1 | 7 |1 |6 |-2|8 |5 17|39 |7 [13|[11| 2 | 2

for (unsigned int s=1; s < bIoclem X5 s 2) {

if (tid % (2s) == 0) Pl |
i data [t d] += sdatalti d + s],] Problem hlghly dwergent

=} j Q- branchmg reSUIts in very poor
i performance!

_syncth reads();

TELECOM
SudParis

3 Hi |

s Divergency

Threads in the same warp:

Thread A: Step 1 = Wait Step 2

Thread B: St9p 1 Step 2 Wait " 3
Wait

Time

Threads in different warps:

Step 2
Thread A: Step 1 = P

Thread B: Step 1 = Step_2_

Time

TELECOM
SudParis

a3

mmmmm €1 All Work !

Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex=2*s *tid;

}

_syn-cthreads();:ﬁ | i

}

TELECOM
SudParis

3 Hi |

- Parallel Reduction: Sequential Addressing

Values (shared memory)|(10| 1|8 |1|0|-2|3|5|-2|3|2|7]|]0|11|0] 2

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread

Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values
Step 4 Thread
Stride 1 IDs
Values

TELECOM
SudParis

3 Hi |

Problem : Load unbalancing

SudParis
I N P i

| Idle Threads @

NVIDIA.
Problem:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid <s) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

Half of the threads are idle on first loop iteration!

This is wasteful...

TELECOM
SudParis

a3

mmmmmm 10 9O further

e First add during global load
* Unroll last warp
 Completely unrolled

* Multiple adds per thread

* Use intermediate memory - next week.

TELECOM
SudParis

3 Hi |

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

