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1.1 Middleware for distribution
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■ Middleware is a software layer which provides :

• Programming interfaces (common API)
• Protocol for interoperability

− With data exchange format
. . . to support distribution and heterogeneity.
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1.2 Goal : interoperability

■ Existing “legacy code”,

■ Numerous languages,

■ Several operating systems,

■ Various hardware (e.g., little endian, big endian),

■ Several network protocols

⇒ need for interoperability!
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1.3 Distribution models

■ Point to point message

■ Point to multipoint message

■ Event/action

■ Publish/subscribe

■ Client/server

■ Mobile code

■ Virtual shared memory
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1.4 Client-server models

■ Procedural

• Remote Procedure Call - RPC

■ Object-oriented

• Remote Method Invocation (Java RMI, Common Object Request Broker
Architecture CORBA)

■ Data-oriented

• SQL requests
• REST (Representational State Transfer)- create, read, update, delete over

HTTP

■ Traditionnal Web (HTTP requests)

■ Web Services (SOAP over HTTP)
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1.5 Synchronous vs asynchronous mode

■ Two entities (e.g., processus) communicate

• In synchronous mode: the two entities (client and server) are active at the
same time, after a request, client is waiting for server response.

• In asynchronous mode: entities send messages, they don’t wait for responses,
they don’t know when the message will be delivered
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1.6 Asynchronous call, synchronous call, buffered
message
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2 Synchronous middleware and the big picture

WebServices/JavaRMI
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2.1 Introduction of the distributed example

Device
1

*

Printer<< Interface >>

PrinterInterface

docName)

+submitPrint (

PrinterClient

■ Which distribution ?

■ Which abstractions (service, object) ?

■ Which middleware ?
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2.2 Principle of distributed objects

Automatic generation

stub and skeleton

implementationclient

client

skeleton

implementation

client implementation
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};
j=RI.submitPrint() j=I.submitPrint()

Interface (contract)

interface Printer {

JobInfo submitPrint ();

stub

stub
communication

messages 
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2.3 The stub and the skeleton
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2.4 Proxy Object and inheritance tree

■ Proxy: Representative for remote access

interface
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Printer Interface

Client
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Printer Implementation
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Printer Proxy
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2.5 Proxy design pattern

■ Context: A client needs access to a remote service provided by some entity
■ Problem
• Define an access mechanism that does not involve

− Hard-coding the location of the remote service in the client code
− Deep knowledge of the communication protocols by the client

• Desirable properties
− Access should be efficient at run-time and secure
− Programming should be simple: No difference between local and remote

access
• Constraints: Distributed environment (no single address space)

■ Solutions
• Use a proxy i.e. a local representative of the server on the client side that

isolates the client from the communication system and the remote service
• Keep the same interface for the representative as for the servant
• Define a uniform proxy structure to facilitate automatic generation
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2.5.1 Sequence diagram of Proxy
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2.6 Distribution Implementation Process

1. Description of the interface in IDL

2. IDL compiler creates the stub and
the skeleton

3. Write both client and server
implementations

client implementation

skeleton
stub

interface Printer {

};

JobInfo submitPrint (in string docName, out short docSize);

;

RPrint proxy; class Printer {

Printer S

};

t=proxy.submitPrint ();

(to write)

(automatic generation)

IDL compiler

IDL Interface (to write)
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2.7 Multi-languages (or multi-ORBs, or multi-
OSs)

Interface IDL

};

interface Printer {
Tache submitPrint ();

compile IDL −>C++compile IDL −>Java

skeleton
stubJava

C++
stub
Java

skeleton
C++

printer.submitPrint();

};

;

class

PrinterImpl {

client Java
implementation

C++
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2.8 Distribution implications

■ Objects/service implementation are in different spaces (not the same
process, not the same computer . . . ):

• Assign a unique identifier to each object/service in different spaces
• Localize objects/service implementations
• Transports requests and replys
• Use of a neutral network format for the data
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2.9 Invocation sequence diagram
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2.10 Middleware for synchronous requests : main
concepts
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2.11 Inherent complexity of distribution

“ Distributed systems: One on which I cannot get any work done,
because some machine I have never heard of has crashed “

Leslie Lamport

■ No global state

■ Poor debugging tools

■ Partial failures, network partition

■ Requests in parallel (concurrency management)

■ Trusting the caller (authentication)

21/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests



3 Conclusions
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3.1 Main distributed object middleware

CORBA (OMG) 1991

Java RMI (Sun) 1997

SOAP WebService (w3C) 2001

REST WebService (w3C) 2001

GoogleRPC (Google) 2015

GraphQL (Facebook) 2015
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3.2 Comparison of historical synchronous middle-
ware

CORBA RMI SOAP REST gRPC GraphQL

Origin OMG SUN W3C W3C google FaceBook
Prog. language multi Java multi multi multi multi
IDL (Interface
Definition Lan-
guage)

IDL CORBA interface Java WSDL URIs Protocol Buffer
IDL

GraphQL
Schema Defini-
tion Language
(SDL).

data presenta-
tion

CDR/binary serialisation/binary SOAP En-
velope/XML

JSON/XML/text protobuf/binary JSON

protocole IIOP/TCP IIOP/TCP SOAP/HTTP
Protocol

HTTP1 HTTP2 HTTP1

connexions connected connected short connex-
ions

short connex-
ions

bi-directional short connex-
ions

object refer-
ences

location inde-
pendant

IP+port URL URI URL URL

naming service NS, trading RMI registry,
JNDI

UDDI, WSIL / / /

main advan-
tages

services/efficiency easy in java SOA simple efficient mes-
sage transmis-
sion

define views
from several
resources

main difficulties complex to learn Java/Java complex low level maturity and
low navigator
support

complex to learn

24/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests



3.3 Take away conclusion

■ Synchonous vs asynchronous

■ Proxy design pattern

■ Complexity of distribution

■ One concept: RPC Remote Procedure Call (1984), several family of
solutions

• Interface definition language, protocols, Data representation . . .

■ Synchronous request middleware is the necessary foundation to build higher
level middleware

• Application servers
• Publish/subscribe
• Compositions and orchestrations
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