
Middleware for
synchronous requests
Sophie Chabridon and Chantal Taconet

September 2024

1 Introduction

1. Introduction
1.1 Middleware for distribution
1.2 Goal : interoperability
1.3 Distribution models
1.4 Client-server models
1.5 Synchronous vs asynchronous mode
1.6 Asynchronous call, synchronous call, buffered message
2. Synchronous middleware and the big picture
3. Conclusions

2/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.1 Middleware for distribution

network

Middleware Middleware

Application Artefacts Application Artefacts

Middleware API Middleware API

Protocole du middleware

OS 2 API

Operating

System 2System 1

Operating

OS1 API

HeterogeneousHeterogeneous

■ Middleware is a software layer which provides :

• Programming interfaces (common API)
• Protocol for interoperability

− With data exchange format
. . . to support distribution and heterogeneity.

3/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.2 Goal : interoperability

■ Existing “legacy code”,

■ Numerous languages,

■ Several operating systems,

■ Various hardware (e.g., little endian, big endian),

■ Several network protocols

⇒ need for interoperability!

4/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.3 Distribution models

■ Point to point message

■ Point to multipoint message

■ Event/action

■ Publish/subscribe

■ Client/server

■ Mobile code

■ Virtual shared memory

5/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.4 Client-server models

■ Procedural

• Remote Procedure Call - RPC

■ Object-oriented

• Remote Method Invocation (Java RMI, Common Object Request Broker
Architecture CORBA)

■ Data-oriented

• SQL requests
• REST (Representational State Transfer)- create, read, update, delete over

HTTP

■ Traditionnal Web (HTTP requests)

■ Web Services (SOAP over HTTP)

6/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.5 Synchronous vs asynchronous mode

■ Two entities (e.g., processus) communicate

• In synchronous mode: the two entities (client and server) are active at the
same time, after a request, client is waiting for server response.

• In asynchronous mode: entities send messages, they don’t wait for responses,
they don’t know when the message will be delivered

7/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

1.6 Asynchronous call, synchronous call, buffered
message

a:Process

request

b:Process

request

handler

reply

Synchronous call

wait

a:Process

send msg 3

send msg 2

send msg 1
deliver msg 1

deliver msg 2

deliver msg 3

System
m:MsgPassing

ask for a msg

ask for a msg

ask for a msg

a:Process

event/message

b:Process

event/message

handler

b:Process

wait

Buffered messagesAsynchronous event

(push) (pull)

8/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2 Synchronous middleware and the big picture

WebServices/JavaRMI

Synchronous Call

TCP/UDP

sockets

BPELSCA

Activity Orchestrations

Application servers

− Life cycle (instantiate)

− Persistency

Structural Compositions

JavaEE

RabbitMQ

Publish/Subscribe

9/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.1 Introduction of the distributed example

Device
1

*

Printer<< Interface >>

PrinterInterface

docName)

+submitPrint (

PrinterClient

■ Which distribution ?

■ Which abstractions (service, object) ?

■ Which middleware ?

10/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.2 Principle of distributed objects

Automatic generation

stub and skeleton

implementationclient

client

skeleton

implementation

client implementation

skeleton

};
j=RI.submitPrint() j=I.submitPrint()

Interface (contract)

interface Printer {

JobInfo submitPrint ();

stub

stub
communication

messages

11/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.3 The stub and the skeleton

client

proxy

marshalling
arguments

unmarshalling

arguments

marshalling

results

unmarshalling

results

PI

stub skeleton implementation

message

message

t=RPI.submitPrint();

I.submitPrint()

submitPrint()

12/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.4 Proxy Object and inheritance tree

■ Proxy: Representative for remote access

interface

submitPrint()

Printer Interface

Client

submitPrint()

Printer Implementation

submitPrint()

Printer Proxy

delegates

<<implements>>

13/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.5 Proxy design pattern

■ Context: A client needs access to a remote service provided by some entity
■ Problem
• Define an access mechanism that does not involve

− Hard-coding the location of the remote service in the client code
− Deep knowledge of the communication protocols by the client

• Desirable properties
− Access should be efficient at run-time and secure
− Programming should be simple: No difference between local and remote

access
• Constraints: Distributed environment (no single address space)

■ Solutions
• Use a proxy i.e. a local representative of the server on the client side that

isolates the client from the communication system and the remote service
• Keep the same interface for the representative as for the servant
• Define a uniform proxy structure to facilitate automatic generation

14/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.5.1 Sequence diagram of Proxy

s:Servant

service request

c:Client p:Proxy

service request

result

pre−processing

e.g., marshalling

post−processing

result

e.g., unmarshalling

Interface I

15/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.6 Distribution Implementation Process

1. Description of the interface in IDL

2. IDL compiler creates the stub and
the skeleton

3. Write both client and server
implementations

client implementation

skeleton
stub

interface Printer {

};

JobInfo submitPrint (in string docName, out short docSize);

;

RPrint proxy; class Printer {

Printer S

};

t=proxy.submitPrint ();

(to write)

(automatic generation)

IDL compiler

IDL Interface (to write)

16/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.7 Multi-languages (or multi-ORBs, or multi-
OSs)

Interface IDL

};

interface Printer {
Tache submitPrint ();

compile IDL −>C++compile IDL −>Java

skeleton
stubJava

C++
stub
Java

skeleton
C++

printer.submitPrint();

};

;

class

PrinterImpl {

client Java
implementation

C++

17/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.8 Distribution implications

■ Objects/service implementation are in different spaces (not the same
process, not the same computer . . .):

• Assign a unique identifier to each object/service in different spaces
• Localize objects/service implementations
• Transports requests and replys
• Use of a neutral network format for the data

18/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.9 Invocation sequence diagram

locate

locate

submitPrint()

forwardRequest()

invoke()
submitPrint()

ClientProxy

marshall

unmarshall

ProxyServer

marshall

unmarshall

Implementation
c:Client m:Printer m:Printer i:Printer

Broker Broker
:Request :Request

receive()

receive()

19/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.10 Middleware for synchronous requests : main
concepts

ORB 1 ORB2

IDL

Interface

Definition

Language

Middleware

Protocol

Server

client

message

message
t=rPI.submitPrint();

submitPrint()

implementation

i.submitPrint()

stub skeleton

20/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

2.11 Inherent complexity of distribution

“ Distributed systems: One on which I cannot get any work done,
because some machine I have never heard of has crashed “

Leslie Lamport

■ No global state

■ Poor debugging tools

■ Partial failures, network partition

■ Requests in parallel (concurrency management)

■ Trusting the caller (authentication)

21/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

3 Conclusions

1. Introduction
2. Synchronous middleware and the big picture
3. Conclusions
3.1 Main distributed object middleware
3.2 Comparison of historical synchronous middleware
3.3 Take away conclusion

22/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

3.1 Main distributed object middleware

CORBA (OMG) 1991

Java RMI (Sun) 1997

SOAP WebService (w3C) 2001

REST WebService (w3C) 2001

GoogleRPC (Google) 2015

GraphQL (Facebook) 2015

.net

Web Service

1985 1990 1995 2000 2005 2010

RPC

C++

COM

WWW

JAVA

XML

DCOM

CORBA JAVA RMI REST

2015

gRPC

GraphQL

23/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

3.2 Comparison of historical synchronous middle-
ware

CORBA RMI SOAP REST gRPC GraphQL

Origin OMG SUN W3C W3C google FaceBook
Prog. language multi Java multi multi multi multi
IDL (Interface
Definition Lan-
guage)

IDL CORBA interface Java WSDL URIs Protocol Buffer
IDL

GraphQL
Schema Defini-
tion Language
(SDL).

data presenta-
tion

CDR/binary serialisation/binary SOAP En-
velope/XML

JSON/XML/text protobuf/binary JSON

protocole IIOP/TCP IIOP/TCP SOAP/HTTP
Protocol

HTTP1 HTTP2 HTTP1

connexions connected connected short connex-
ions

short connex-
ions

bi-directional short connex-
ions

object refer-
ences

location inde-
pendant

IP+port URL URI URL URL

naming service NS, trading RMI registry,
JNDI

UDDI, WSIL / / /

main advan-
tages

services/efficiency easy in java SOA simple efficient mes-
sage transmis-
sion

define views
from several
resources

main difficulties complex to learn Java/Java complex low level maturity and
low navigator
support

complex to learn

24/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

3.3 Take away conclusion

■ Synchonous vs asynchronous

■ Proxy design pattern

■ Complexity of distribution

■ One concept: RPC Remote Procedure Call (1984), several family of
solutions

• Interface definition language, protocols, Data representation . . .

■ Synchronous request middleware is the necessary foundation to build higher
level middleware

• Application servers
• Publish/subscribe
• Compositions and orchestrations

25/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

References

Krakowiak, S. (2009).

Middleware Architecture with Patterns and Frameworks.

.

26/26 09/2024 Sophie Chabridon and Chantal Taconet Middleware for synchronous requests

http://sardes.inrialpes.fr/~krakowia/MW-Book/

	Introduction
	Middleware for distribution
	Goal : interoperability
	Distribution models
	Client-server models
	Synchronous vs asynchronous mode
	Asynchronous call, synchronous call, buffered message

	Synchronous middleware and the big picture
	Introduction of the distributed example
	Principle of distributed objects
	The stub and the skeleton
	Proxy Object and inheritance tree
	Proxy design pattern
	Distribution Implementation Process
	 Multi-languages (or multi-ORBs, or multi-OSs)
	Distribution implications
	Invocation sequence diagram
	Middleware for synchronous requests : main concepts
	Inherent complexity of distribution

	Conclusions
	Main distributed object middleware
	Comparison of historical synchronous middleware
	Take away conclusion

