
1

Introduction to design
patterns for middleware

Denis Conan

ASR/CSC5002
September 2023

Introduction to design patterns for middleware

2

Foreword

■ The sources of this presentation are :
♦ S. Krakowiak (Université Joseph Fourier), “Patrons et canevas pour

l’intergiciel”, ICAR 2006 French Speaking Summer School on Middleware and
Construction of Distributed Applications, Autrans, France, August 2006.
▶ URL of the slides in French :

http://sardes.inrialpes.fr/ecole/2006/ICAR-06-Intro.pdf

♦ S. Krakowiak “Chapitre 1 : Introduction à l’intergiciel” dans “Intergiciel et
Construction d’Applications Réparties”, 2006,
http://sardes.inrialpes.fr/ecole/livre/pub/Chapters/Intro/intro.html

♦ S. Krakowiak “Chapitre 2 : Patrons et canevas pour l’intergiciel” dans
“Intergiciel et Construction d’Applications Réparties”, 2006,
http://sardes.inrialpes.fr/ecole/livre/pub/Chapters/Patterns/patterns.html

♦ S. Krakowiak “Middleware Architecture with Patterns and Frameworks”,
2007, http://sardes.inrialpes.fr/~krakowiak/MW-Book/ (see the first two
chapters)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 2/46

Introduction to design patterns for middleware

3

♦ E. Gamma, R. Helm, R. Johnson, J. Vlissides “Design Patterns : Elements of
Reusable Object-Oriented Software”, Addison-Wesley, 1994
▶ Has been translated in French

♦ F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal
“Pattern-Oriented Software Architecture : Volume 1, A System of Patterns”,
Wiley, 1996

♦ D.C. Schmidt, M. Stal, H. Rohnert and F. Buschmann “Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and Networked
Objects”, Wiley, 2000.

♦ Buschmann, K. Henney and D.C. Schmidt “Pattern-Oriented Software
Architecture, Volume 4, A Pattern Language for Distributed Computing”,
Wiley, 2007

Télécom SudParis — INF — September 2023 — ASR/CSC5002 3/46

Introduction to design patterns for middleware

4

Outline

1 Distributed system organisation with a middleware . 5
2 Design patterns . 6
3 Patterns for distributed interaction . 16
4 Patterns for composition . 31
5 Patterns for coordination . 41

Télécom SudParis — INF — September 2023 — ASR/CSC5002 4/46

Introduction to design patterns for middleware

5

1 Distributed system organisation with a middleware

Application Application Application Application

Operating
System

Operating
System

Operating
System

Operating
System

Standard data
protocol

Communication subsystem / Network

Specific API

Standard API
Standard API

Specific API

Middleware

Télécom SudParis — INF — September 2023 — ASR/CSC5002 5/46

Introduction to design patterns for middleware

6

2 Design patterns

2.1 Objectives of the pattern orientation . 7
2.2 Some design pattern examples for middleware . 8
2.3 Definition of design patterns . 13
2.4 Writing patterns . 14
2.5 Classifying patterns. .15

Télécom SudParis — INF — September 2023 — ASR/CSC5002 6/46

Introduction to design patterns for middleware 2 Design patterns

7

2.1 Objectives of the pattern orientation

Each pattern describes a problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice. a

■ Present the design principles of middleware architecture in a systematic way
♦ Identify the main design and implementation problems
♦ Exhibit the main design solutions relevant to middleware construction
♦ Illustrate the patterns in frameworks in the teaching unit

■ Well known software design patterns :
♦ Factory
♦ Singleton
♦ Iterator

a. Alexander, Christopher (1977). A Pattern Language : Towns, Buildings, Construction. Oxford
University Press.

Télécom SudParis — INF — September 2023 — ASR/CSC5002 7/46

Introduction to design patterns for middleware 2 Design patterns

8

2.2 Some design pattern examples for middleware

2.2.1 Example 1 : A client/server middleware . 9
2.2.2 Example 2 : Integration of legacy applications . 10
2.2.3 Example 3 : Adaptation to client resources . 11
2.2.4 Example 4 : Monitoring and control of networked equipments 12

Télécom SudParis — INF — September 2023 — ASR/CSC5002 8/46

2 Design patterns 2.2 Some design pattern examples for middleware

9

2.2.1 Example 1 : A client/server middleware

Pre−
compiler

IDL

Name
Server

ServerClient

client stub (RPC)
stub (CORBA)
proxy (DCOM)

server stub (RPC)
skeleton (CORBA)
stub (DCOM)

Binding object

... ...

Binding

Factory

Session

Télécom SudParis — INF — September 2023 — ASR/CSC5002 9/46

2 Design patterns 2.2 Some design pattern examples for middleware

10

2.2.2 Example 2 : Integration of legacy applications

New

component

Legacy

application

Legacy

application

Legacy

application

New

component

proprietary

interface

standard

interface

standard

interface
Inter−applications "exchange bus"

Wrapper Wrapper

Wrapper

Télécom SudParis — INF — September 2023 — ASR/CSC5002 10/46

2 Design patterns 2.2 Some design pattern examples for middleware

11

2.2.3 Example 3 : Adaptation to client resources

Proxy

Télécom SudParis — INF — September 2023 — ASR/CSC5002 11/46

2 Design patterns 2.2 Some design pattern examples for middleware

12

2.2.4 Example 4 : Monitoring and control of networked
equipments

■ Physical organisation ■ Logical organisation

Message bus

Télécom SudParis — INF — September 2023 — ASR/CSC5002 12/46

Introduction to design patterns for middleware 2 Design patterns

13

2.3 Definition of design patterns

■ Definition (not limited to program design)
♦ A set of design rules (element definitions, element composition principles,

rules of usage) that allow the designer to answer a class of specific needs in a
specific environment

■ Properties
♦ Elaborated from the experience acquired : Class of problems, capture of the

solution elements common to those problems
♦ Defines design principles, not specific to the implementation
♦ Provides an aid to documentation : Common terminology, even formal

description (“pattern language”)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 13/46

Introduction to design patterns for middleware 2 Design patterns

14

2.4 Writing patterns

■ Name : Higher abstraction which conveys the essence of the pattern succinctly
■ Intent : Short statement stating what the pattern does, its rationale, and the

particular design issue or problem addressed
■ Motivation and context : Scenario illustrating the class of problems addressed ;

should be as generic as possible
■ Problem : Requirements, desirable properties of the solution ; constraints of the

environment
■ Solution

♦ Structure : Static aspects, i.e. components, relationships ; may be depicted in
a classes/components diagram

♦ Interactions : Dynamic aspects, i.e. run-time behaviour, life-cycle ; may be
depicted in a communications/sequence/timing diagram

■ Also known as & related patterns : Other well-known names & closely related
patterns

Télécom SudParis — INF — September 2023 — ASR/CSC5002 14/46

Introduction to design patterns for middleware 2 Design patterns

15

2.5 Classifying patterns

■ Architectural : Large scale, structural organisation, subsystems and relationships
between them

■ Design : Small scale, commonly recurring structure within a particular context
■ Idioms : Language specific, how to implement a particular aspect in a given

language
■ And many more : Software process, requirement elicitation, analysis, etc.

Télécom SudParis — INF — September 2023 — ASR/CSC5002 15/46

Introduction to design patterns for middleware

16

3 Patterns for distributed interaction

3.1 Asynchronous call, synchronous call, buffered message. .17
3.2 Call-back and Inversion of control . 18
3.3 Reflection : Observe and act on its own state and behaviour . 19
3.4 Factory : Entity creation . 21
3.5 Proxy : Representative for remote access . 23
3.6 Wrapper or Adapter : Interface transformation . 25
3.7 Interceptor : Adaptable service provision . 27
3.8 Similarities and differences between the previous patterns . 29

Télécom SudParis — INF — September 2023 — ASR/CSC5002 16/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

17

3.1 Asynchronous call, synchronous call, buffered message

a:Process

request

b:Process

request
handler

reply

Synchronous call

wait

a:Process

send msg 3

send msg 2

send msg 1
deliver msg 1

deliver msg 2

deliver msg 3

System
m:MsgPassing

ask for a msg

ask for a msg

ask for a msg

a:Process

event/message

b:Process

event/message
handler

b:Process

wait

Buffered messagesAsynchronous event
(push) (pull)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 17/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

18

3.2 Call-back and Inversion of control

A:ProcessA:Process B:ProcessB:Process

callback
callback

controlled by B
service request for A

The service request for A
is triggered from the outside
through B, which controls A

service request

result

Inversion of controlSynchronous call with callback

A callback is first registered
and later called asynchronously.

The control flow is no more under the responsability of
the application but controlled by the framework.

Télécom SudParis — INF — September 2023 — ASR/CSC5002 18/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

19

3.3 Reflection : Observe and act on its own state and behaviour

■ Context : Support different types of variations/adaptations of an application
■ Problem : Particular variations must be hidden to the client
■ Solution

♦ Make the system self-aware
▶ Select aspects of its structure and behaviour accessible for adaptation

⋆ Objectify/reify information about properties and variant aspects of the
application’s structure, behaviour, and state into a set of meta-objects

♦ Split the architecture into two major parts
▶ Meta-level : Self-representation of the system in meta-objects

⋆ Type structures, algorithms, or even function call mechanisms
▶ Base level : Application logic

⋆ Uses the meta-objects to remain independent of those aspects that
change

♦ An interface is specified for manipulating the meta-objects
▶ Meta-Object Protocol responsible for performing changes

Télécom SudParis — INF — September 2023 — ASR/CSC5002 19/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

20

■ Architecture principle

Client ObjectA MetaObjectA

1 2

48
3,75,6

Client MetaObjectA

1

7

ObjectA

2

63

4

MetaObject

Factory

5

Télécom SudParis — INF — September 2023 — ASR/CSC5002 20/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

21

3.4 Factory : Entity creation

■ Context : Applications organised as a set of distributed entities
■ Problem

♦ Dynamically create multiple instances of an entity type
♦ Desirable properties

▶ Instances should be parameterised
▶ Evolution should be easy, i.e. no hard-coded decisions

♦ Constraints : Distributed environment, i.e. no single address space
■ Solution

♦ Abstract factory : Defines a generic interface and organisation for creating
entities ; the actual creation is deferred to concrete factories that actually
implement the creation methods

♦ A further degree of flexibility is achieved by using Factory Factory, that is the
creation mechanism itself is parameterised

Télécom SudParis — INF — September 2023 — ASR/CSC5002 21/46

3 Patterns for distributed interaction 3.4 Factory : Entity creation

22

3.4.1 Sequence diagram of Factory

ff:FactoryFactory

f:Factory

s:Servant

request for creation

return
servant’s reference

create

optional

c:Client

request for removal

create

remove

optional

Télécom SudParis — INF — September 2023 — ASR/CSC5002 22/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

23

3.5 Proxy : Representative for remote access

■ Context : A client needs access to the services by some entity (the “servant”)
■ Problem

♦ Define an access mechanism that does not involve
▶ Hard-coding the location of the servant into the client code
▶ Deep knowledge of the communication protocols by the client

♦ Desirable properties
▶ Access should be efficient at run-time and secure
▶ Programming should be simple : No difference between local and remote

access
♦ Constraints : Distributed environment (no single address space)

■ Solutions
♦ Use a local representative of the server on the client side that isolates the

client from the communication system and the servant
♦ Keep the same interface for the representative as for the servant
♦ Define a uniform proxy structure to facilitate automatic generation

Télécom SudParis — INF — September 2023 — ASR/CSC5002 23/46

3 Patterns for distributed interaction 3.5 Proxy : Representative for remote access

24

3.5.1 Sequence diagram of Proxy

s:Servant

service request

c:Client p:Proxy

service request

result

pre−processing

e.g., marshalling

post−processing

result

e.g., unmarshalling

Interface I

Télécom SudParis — INF — September 2023 — ASR/CSC5002 24/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

25

3.6 Wrapper or Adapter : Interface transformation

■ Context : Clients requesting services ; servers providing services ; services defined
by interfaces

■ Problem
♦ Reuse an existing server by modifying either its interface or some of its

functions in order to satisfy the needs of a client (or class of clients)
♦ Desirable properties : Should be run-time efficient ; should be adaptable

because the needs may change and may not be anticipated ; should be itself
reusable (generic)

■ Solutions
♦ The wrapper screens the server by intercepting method calls to its interface
♦ Each call is prefixed by a prologue and followed by an epilogue in the wrapper
♦ The parameters and results may need to be converted

Télécom SudParis — INF — September 2023 — ASR/CSC5002 25/46

3 Patterns for distributed interaction 3.6 Wrapper or Adapter : Interface transformation

26

3.6.1 Sequence diagram of Wrapper/Adapter

s:Servant

service request

c:Client w:Wrapper

service request 2

result 2

result

Interface I1

Interface I2

pre−processing

post−processing

Télécom SudParis — INF — September 2023 — ASR/CSC5002 26/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

27

3.7 Interceptor : Adaptable service provision

■ Context : Service provision (in a general setting)
♦ Client-server, peer-to-peer, high-level to low-level
♦ May be uni- or bi-directional, synchronous or asynchronous

■ Problem
♦ Transform the service (adding new treatments), by different means

▶ Interposing a new layer of processing (like wrapper)
▶ Changing the destination (may be conditional)

♦ Constraints : Services may be added/removed dynamically
■ Solutions

♦ Create interposition entities (statically or dynamically). These entities
▶ Intercept calls (and/or return statements) and insert specific processing,

that may be based on content analysis
▶ May redirect call to a different target
▶ May use call-backs

Télécom SudParis — INF — September 2023 — ASR/CSC5002 27/46

3 Patterns for distributed interaction 3.7 Interceptor : Adaptable service provision

28

3.7.1 Sequence diagram of Interceptor

si:SupportingInfrastructure

create
c:Client

create

s:Servant

i:Interceptor

service request
Interface I

Interface I

use service

callback

result

Télécom SudParis — INF — September 2023 — ASR/CSC5002 28/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

29

3.8 Similarities and differences between the previous patterns

■ Wrapper Vs. Proxy
♦ Wrapper and Proxy have a similar structure

▶ Proxy preserves the interfaces
Vs. Wrapper transforms the interface

▶ Proxy often (not always) involves remote access
Vs. Wrapper is usually on-site

■ Wrapper Vs. Interceptor
♦ Wrapper and Interceptor have a similar function which is behavioural

reflection
▶ Wrapper transforms the interface

Vs. Interceptor transforms the functionality (may completely screen
servant)

■ Reflection Vs. Interceptor
♦ Interceptor provides a means to implement reflective mechanisms

▶ Not the only way to implement reflection (others = language, byte code
transformation, etc.)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 29/46

Introduction to design patterns for middleware 3 Patterns for distributed interaction

30

▶ Interceptor exposes only part of the state of the base level
♦ Reflection can define a type of interception mechanism in the form of a

meta-object protocol

Télécom SudParis — INF — September 2023 — ASR/CSC5002 30/46

Introduction to design patterns for middleware

31

4 Patterns for composition

4.1 Principle of de/composition in distribution . 32
4.2 Contract : Qualified required/offered interfaces . 33
4.3 Layer or Abstract machine or Protocol stack : Vertical decomposition 34
4.4 Multi-tier architecture : Horizontal decomposition . 35
4.5 Component/Container : Contract + Factory + Interceptor + extra-functionalities38
4.6 Composite with sharing : Component + Vertical decomposition + Sharing 39

Télécom SudParis — INF — September 2023 — ASR/CSC5002 31/46

Introduction to design patterns for middleware 4 Patterns for composition

32

4.1 Principle of de/composition in distribution

■ Objective
♦ Ease the design

▶ Show the design approach through the means of the structure
▶ Show off the interfaces and the dependencies

♦ Ease the evolution
▶ Apply the encapsulation principle
▶ Standardise the exchanges

■ Examples
♦ Multi-level structure

▶ “Vertical” decomposition : e.g., Layer
Vs. “horizontal” decomposition : e.g. Multi-tier
Vs. both of them : e.g. Middle-tier/Component

♦ Leverage the concept of Contract
▶ From “simple” interfaces to

Offered/server, required/client, and internal and external interfaces

Télécom SudParis — INF — September 2023 — ASR/CSC5002 32/46

Introduction to design patterns for middleware 4 Patterns for composition

33

4.2 Contract : Qualified required/offered interfaces

Contract

ServerClient

Client/required Server/provided
interfaceinterface

conformance

■ Four levels of contract

1. Syntactic contract : Types of operations, verified statically

2. Behavioural contract : Dynamic behaviour (semantics) of operations,
assertion-based

3. Synchronisation contract : Interactions between operations, synchronisation

4. Quality of service contract : extra-functional aspects such as performance,
availability, security

Télécom SudParis — INF — September 2023 — ASR/CSC5002 33/46

Introduction to design patterns for middleware 4 Patterns for composition

34

4.3 Layer or Abstract machine or Protocol stack : Vertical
decomposition

■ Context : Complex “local” system design
■ Problem : Define different levels of abstraction/refinement
■ Solution : Vertical decomposition with levels, and upper and lower interfaces

Level I+1

Level I

Level I−1

Base level

Interface I−1

Interface I

interface I−1

Downcall

interface I

Upcall

Télécom SudParis — INF — September 2023 — ASR/CSC5002 34/46

Introduction to design patterns for middleware 4 Patterns for composition

35

4.4 Multi-tier architecture : Horizontal decomposition

■ Context : Complex distributed system ; incremental upgrade
■ Problem : Evolution of the client and the server sides, load-balancing, scalability
■ Solution : Horizontal decomposition into tiers, separation of system functionalities

Application
Data

managementinterface

User

(c)

Application
Data

management

(a)

Applicationinterface

User Data
management

(b)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 35/46

4 Patterns for composition 4.4 Multi-tier architecture : Horizontal decomposition

36

4.4.1 Focus on presentation tier : The MVC pattern

■ Context : Management of the client view or user interface
■ Problem : Confusion in the roles of objects prevents evolution.
■ Solution : Separate the data (Model), the HMI on screen (View) and the control

logic (Controller) which is the glue between the two
■ Proposed in 1978-79 by Trygve Reenskaug et al. from XEROX PARC for the

Smalltalk language

Télécom SudParis — INF — September 2023 — ASR/CSC5002 36/46

4 Patterns for composition 4.4 Multi-tier architecture : Horizontal decomposition

37

4.4.2 MVC pattern vs 3-tier architecture

■ MVC pattern
♦ Focus on the presentation layer to improve code evolutivity
♦ Triangular architecture : The view sends updates to the controller, the

controller updates the model, and the view gets updated directly from the
model.

■ vs 3-tier architecture style
♦ Focus on the distribution of the architecture to favor scalability
♦ Linear architecture : The presentation tier never communicates directly with

the data tier. Communication goes through the middle tier.

Télécom SudParis — INF — September 2023 — ASR/CSC5002 37/46

Introduction to design patterns for middleware 4 Patterns for composition

38

4.5 Component/Container : Contract + Factory + Interceptor
+ extra-functionalities

■ Context : Distributed application accessing extra-functional services
■ Problem : Control life-cycle ; separate business/extra-functional parts
■ Solution :

♦ Contract to make explicit server and client interfaces
♦ Container that implement Factory + Interceptor to manage extra-functional

services

Client Component

Access to extra−functional services: transaction, security, etc.

service request

Server interface

Container/Membrane
Configuration

Interceptor Interceptor

Client interface

life−cycle

Télécom SudParis — INF — September 2023 — ASR/CSC5002 38/46

Introduction to design patterns for middleware 4 Patterns for composition

39

4.6 Composite with sharing : Component + Vertical
decomposition + Sharing

■ Context
♦ Part-whole hierarchies of components

■ Problem
♦ Make the client simple

▶ Ignore the difference between composite entities and individual
components

♦ A component can have more than one parent
♦ Make it easier to add new kinds of components
♦ Make the design overly general

■ Solution
♦ Abstract component entity which represents both a primitive or a composite
♦ Control the content of composite components
♦ Extend the reference/naming system to explicitly express sharing

Télécom SudParis — INF — September 2023 — ASR/CSC5002 39/46

4 Patterns for composition 4.6 Composite with sharing : Component + Vertical decomposition + Sharing

40

4.6.1 Example of the Fractal Component Model

■ É. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stéfani “The Fractal
Component Model and Its Support in Java” Software–Practice and Experience,
36(11), pp. 1257–1284, September 2006

membrane
controller

interfaces
client server

component
sub−

comp.

sharedcomp.

primitive

component

composite

Télécom SudParis — INF — September 2023 — ASR/CSC5002 40/46

Introduction to design patterns for middleware

41

5 Patterns for coordination

5.1 Naming : White pages service . 42
5.2 Trading : Yellow pages service . 43
5.3 Publish/subscribe or Observer or Event channel : Change-propagation mechanism44
5.4 Pipes and filters : Structure for processing streams of data . 46

Télécom SudParis — INF — September 2023 — ASR/CSC5002 41/46

Introduction to design patterns for middleware 5 Patterns for coordination

42

5.1 Naming : White pages service

■ Context : clients and servers distributed over the network
■ Problem

♦ Obtain a (distributed) reference to an entity
♦ Only the logical name is known by the client

■ Solution
♦ The server registers its reference under a logical name to a name server
♦ The name server has a “well-known” reference
♦ The client retrieves the server’s reference by providing the logical name
♦ Logical names are organised as a hierarchy

ServerClient

NamingContext

NameServerA

NamingContext

NameServerB

service request

resolve()

resolve() register()

Télécom SudParis — INF — September 2023 — ASR/CSC5002 42/46

Introduction to design patterns for middleware 5 Patterns for coordination

43

5.2 Trading : Yellow pages service

■ Context : clients and servers distributed over the network
■ Problem

♦ Obtain a (distributed) reference to an entity
♦ Only a property characterising the server is known by the client : Service

name...
■ Solution

♦ The client specifies its requets by providing properties of the required service
♦ The trader answers by giving a set of server’s references matching the client’s

query

Server

Offers/properties Offers/properties

Client

TraderA TraderB

service request

query()

query() register()

Télécom SudParis — INF — September 2023 — ASR/CSC5002 43/46

Introduction to design patterns for middleware 5 Patterns for coordination

44

5.3 Publish/subscribe or Observer or Event channel :
Change-propagation mechanism

■ Context
♦ Keep the state of cooperating components synchronised

■ Problem
♦ Be notified about state changes in a particular entity
♦ Number and identities of dependent entities not known a priori
♦ Explicit polling not feasible or not efficient
♦ Notifiers and notified entities not tightly coupled

■ Solution
♦ Notifier also called publisher or subject : Maintains a registry of subscribers
♦ Notified entities also called subscribers or observers : Subscribe to notification
♦ Push model (publisher sends all changes)

Vs. pull model (publisher sends nature of data change and subscriber gets
retrieves data)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 44/46

5 Patterns for coordination 5.3 Publish/subscribe or Observer or Event channel : Change-propagation mechanism

45

5.3.1 Example of OMG CORBA Event channel

Optional
process
boundaryPublisher

Channel

Event

Optional
process
boundary Subscriber

Subscriber

ProxyProxy
Publisher Subscriber

ProxyProxy
Publisher

Télécom SudParis — INF — September 2023 — ASR/CSC5002 45/46

Introduction to design patterns for middleware 5 Patterns for coordination

46

5.4 Pipes and filters : Structure for processing streams of data

■ Context : Distributed application processing data streams
■ Problem

♦ Flexibility by reordering/recombining processing steps
♦ Small processing steps are easier to reuse in a different setting
♦ Non-adjacent steps do not share information

■ Solution
♦ Each processing step is encapsulated in a filter component
♦ Data is passed through pipes between adjacent filters
♦ Filters are the processing units of the pipeline

▶ Consume data incrementally to achieve low latency and enable parallelism
♦ Push mode Vs. pull mode Vs. active mode (pull + push)

Télécom SudParis — INF — September 2023 — ASR/CSC5002 46/46

