
Distributed Event-Based
System — AMQP, MQTT,
and Kafka
Denis Conan

September 2024

Outline

1. Motivations and objectives/requirements
2. Definition of Event-Based Systems
3. Which Topic-based filtering DEBS?
4. 1st tech.: Topic-based filtering w/ OASIS AMQP v.0.9.1
5. 2nd tech.: Topic-based filtering w/ OASIS MQTT, IoT requirements
6. 3rd tech.: Topic-based filtering w/ Apache Kafka, Event Sourcing
7. Conclusion

2/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

Foreword

■ The content of these slides is extracted from the following references:

• P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec “The Many
Faces of Publish/Subscribe”, ACM Computing Surveys, 35(2), June 2003.

• G. Mühl, L. Fiege, and P. Pietzuch “Distributed Event-Based Systems”,
Springer-Verlag, 2006.

• E. Al-Masri, K.R. Kalyanam, J. Batts, J. Kim, S. Singh, T. Vo, and C. Yan.
“Investigating Messaging Protocols for the Internet of Things (IoT)”, IEEE
Access, pages 94880–94911, April 2020.

• OASIS AMQP Consortium, “AMQP: Advanced Message Queuing Protocol”,
Version 0-9-1, Protocol specification, OASIS Consortium, November 2008.

• OASIS, “MQTT Version 5.0”, Standard, OASIS Consortium, March 2019.
• https://kafka.apache.org/documentation/
• B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for

Streaming Services with Apache Kafka”, O’Reilly, 2018.

3/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
https://www.amqp.org/specification/0-9-1/amqp-org-download
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://kafka.apache.org/documentation/

1 Motivations and objectives/requirements

Foreword: We consider distributed architectures with application-layer messaging systems

1.1 E.g. IoT platforms
1.2 E.g. Web services with “Event sourcing”
1.3 E.g. Life-cycle of data-driven machine learning applications
1.4 E.g. Autonomic computing—MAPE-K loop
1.5 E.g. Control theory—SISO loop
1.6 Requirements

4/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

1.1 E.g. IoT platforms I

■ Communicate with lots of devices that are volatile

=⇒ Scalability (#clients, #events)
+ Space-, time-, and synchronisation-decoupling

■ E.g., Amazon IoT platform

https://aws.amazon.com/fr/iot-core/

5/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://aws.amazon.com/fr/iot-core/

1.1 E.g. IoT platforms II
■ E.g. Microsoft Azure reference architecture

One of the previous version of

https://docs.microsoft.com/fr-fr/azure/architecture/reference-architectures/iot

6/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://docs.microsoft.com/fr-fr/azure/architecture/reference-architectures/iot

1.2 E.g. Web services with “Event sourcing”

■ Routing, event-driven for high performance,
scalability (number of events per second, GB per second)

Old architecture from V. Setty, et al., The Hidden Pub/Sub of Spotify (Industry Article). ACM DEBS’13, 2013

7/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

1.3 E.g. Life-cycle of data-driven machine learn-
ing applications

■ On the right, execution of the application on a target machine

• Prediction on collected data (real and not annotated)

P. Lalanda. Edge Computing and Learning. In M. Kirsch Pinheiro et al (editors), The Evolution of Pervasive Information Systems, Springer, 2023

8/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

1.4 E.g. Autonomic computing—MAPE-K loop

■ Model of the architecture at runtime for self-management:
i.e. self-configuration, self-optimization, self-healing, and self-protection

■ MAPE-K: Monitor, Analyze, Plan, Execute, Knowledge

J. Kephart et al. The Vision of Autonomic Computing. IEEE Computer, 36(1):41–50, 2003.

9/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

1.5 E.g. Control theory—SISO loop

■ E.g., General model of a Single-Input Single-Output feedback control system

P. Lalanda, J.A. McCann, and A. Diaconescu. Autonomic Computing. Springer, 2014.

A. Filieri, et al.. Software Engineering Meets Control Theory. In Proc. of the IEEE/ACM 10th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages 71–82, May 2015.

10/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

1.6 Requirements

■ Data production/consumption decoupling
• Space decoupling: producers and consumers are distributed
• Synchronisation decoupling: asynchronous and anonymous communication
• Time decoupling: production and consumption at different times

■ Scalability: in messages per second, in data per second, in clients (producers
and consumers) at a given instant

■ Data life-cycle management + filtering
• Aggregation is out of the scope (it is called complex event processing and

streaming)

■ Adaptation to mobile, volatile, and heterogeneous environments

■ One name for many “technologies”: distributed event-based systems,
distributed publish-subscribe systems, distributed messaging service,
message-oriented middleware, active databases, etc.

11/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2 Definition of Event-Based Systems

2.1 Models of interaction and EBS
2.2 Constituents of an EBS
2.3 Notification filtering mechanisms

12/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1 Models of interaction and EBS

2.1.1 “Request/Reply”
2.1.2 “Anonymous Request/Reply”
2.1.3 “Callback”
2.1.4 Studied in this lecture: “Event-Based”
2.1.5 Recap: Models of interaction and EBS

13/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1.1 “Request/Reply”

p:Producerc:Consumer

reply

request

■ The consumer initiates the interaction

■ The consumer knows the address of the producer for issuing the request

■ The consumer waits for the reply: the call is synchronous

■ The producer knows the address of the consumer

14/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1.2 “Anonymous Request/Reply”

To whatever producer
can provide the data

s3:Servers2:Servers1:Serverc:Client

reply
reply

reply

request

■ The consumer initiates the interaction without knowing the address of the
potential producers: there is an intermediate “entity” or “mechanism”

■ The producers that can provide the requested data receive the request
■ The producers reply to the consumer,

i.e. they know the address of the consumer
■ The consumer is willing to receive several replies

15/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1.3 “Callback”

oer:Observer oable:Observable

«new»
dh:DataHandler

updateData

updateData

register

«create»

■ This is the Observable Observer design pattern
■ The consumer creates a data handler to manage registration and receptions
■ The consumer knows the address of the producer and registers with it
■ The producer sends the data updates to the consumer
■ Consumer and DataHandler in the same process =⇒ multi-threading

16/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1.4 Studied in this lecture: “Event-Based”

p2:Producerp1:Producerc:Consumer pubsub:PubSubSystem

«new»
dh:DataHandler

subscribe

publish

filter

filter

publish

notify

«create»

■ This is the Publish Subscribe design pattern
■ The consumer and the producers know the address of the PubSubSystem
■ The consumer subscribes a filter to the PubSubSystem
■ The producers publish data to the PubSubSystem
■ The PubSubSystem applies subscription filters to route data and notify the

relevant consumers
17/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.1.5 Recap: Models of interaction and EBS

■ Initiator: describes whether the consumer or the provider initiates the
interaction

■ Addressing: indicates whether the addressee of the interaction is known or
unknown at the beginning of the interaction

Initiator
Consumer Provider

Adressee Direct Request/Reply Callback
Indirect Anonymous Re-

quest/Reply
Event-Based

■ The trade-off is between the simplicity of request/reply and the flexibility of
event-based interaction

18/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.2 Constituents of an EBS

Event

Consumer

F, F’ : Filters

Publish/Subscribe interface

N : Notification
1.a. advertise (F)

Producer

2. publish (N)

1.b. subscribe (F’)

3. notify (N)

Notification Service Notification Service

Communication Implementation

[optional]

We do not detail the advertise operation in this lecture.

19/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.2.1 Terminology

■ Event : any happening of interest that can be observed from within a
computer

• Event example: physical event, timer event, etc.

■ Notification: an object that contains data describing the event

■ Producer: a component that publishes notifications

■ Consumer: a component that reacts to notifications delivered to them by
the notification service

■ Subscription: describes a set of notifications a consumer is interested in

■ Advertisement: is issued by a producer to declare the notifications it is
willing to send

20/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.2.2 Publish/subscribe interface

■ Specifies the functionalities for decoupling producers from consumers

■ Proposes the following operations:

• publish(n): a producer pushes notification n to the notification service
• advertise(F): a producer advertises that it will send notifications that match

the filter F
− We do not detail the advertise operation in this lecture.

• subscribe(F): a consumer subscribes to receive notifications that match the
filter F

• notify(n): the notification service delivers the notification n to those
consumers that have a matching subscription

21/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.3 Notification filtering mechanisms

2.3.1 Channels-based filtering
2.3.2 Topic-based (a.k.a. subject-based) filtering
2.3.3 Content-based filtering
2.3.4 (Type-based filtering)

22/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.3.1 Channels-based filtering
■ Producers select a channel into which a notification is published

■ Consumers select a channel and will get all notifications published therein

■ The message is “opaque” to the event-based service

■ Framework examples: CORBA Event Service, CORBA Notification Service,
OASIS AMQP standard v 0.9.1 (emulated in exchange mode “fanout”)...

m2 m1, m2

Subscribe

Publish

Notify

P Publisher

S Subscriber

P S

m1

LondonStockMarket

Stock quotes

Technology

23/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.3.2 Topic-based (a.k.a. subject-based) filtering
■ Uses string matching for notification selection with jokers

■ Each notification and subscription is defined as a rooted path in a tree of
topics

■ Example:

• A stock exchange application publishes new quotations of FooBar under the
topic: /Exchange/Europe/London/Technology/FooBar

• Consumers subscribe for /Exchange/Europe/London/Technology/* to get all
technologies quotations

■ The subject or topic is in message header, the content is “opaque”

■ Example of solution: OASIS AMQP standard version 0.9.1 (exchange mode
“topic”), OASIS MQTT standard version 3.1.1, TIBCO Rendezvous, JMS
(Java Message Queue), WebSphere MQ Publish/Subscribe (WMQPS),
Apache Kafka, Apache Qpid, Spring/Pivotal RabbitMQ, Amazon IoT Core,
Microsoft Azure IoT Hub...

24/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.3.3 Content-based filtering

■ Filters are evaluated on the whole content of notifications
■ Example solutions: template matching, extensible filter expressions on name

value pairs, XPath expressions on XML schemas, etc.
■ Example for the structured-record data model:

A publication is a set of pairs: m1 = {(company ,“Telco”), (price, 120)}
m2 = {(company ,“Telco”), (price, 90)}

A filter is a conjunction of triples: F = {(company , =,“Telco”), (price, <, 100)}

S
P

m2m1

LondonStockMarket

Publish

Notify

Subscribe

P Publisher

S Subscriber

m2

25/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

2.3.4 (Type-based filtering)

■ Uses subtype inclusion to select notifications

■ If a consumer subscribes to the type StockQuote, it will receive
Technology quotations and other notifications that are sub-types of
StockQuote

...

...

LondonStockMarket

StockQuote

Technology

■ All the producers and consumers must agree on the hierarchy of types
=⇒ Not flexible at all, thus not used =⇒ the title in brackets

26/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

3 Which Topic-based filtering DEBS? I
■ Reminder: We study application-layer distributed-event based systems

■ Topic-based filtering = filtering currently used by IT industry

• Channels-based filtering: previous middleware like CORBA
• Type-based filtering: not usable
• Content-based filtering: more for complex event processing and streaming

1. OASIS AMQP: introduce the concept of “broker”

2. OASIS MQTT: introduce constraints from the Internet of Things

3. Apache Kafka: introduce design patterns “Event Sourcing” and
“Collaboration”

27/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

3 Which Topic-based filtering DEBS? II
In this slide, let’s take the application domain of the IoT

E. Al-Masri, K.R. Kalyanam, J. Batts, J. Kim, S. Singh, T. Vo, and C. Yan “Investigating Messaging Protocols
for the Internet of Things (IoT)”, IEEE Access, pages 94880–94911, April 2020.

Also, RabbitMQ is one of the engine of: Amazon MQ, the Google Cloud Platform through bluemedora, IBM

Cloud in the context of Web and mobile applications.

28/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/welcome.html
https://bluemedora.com/rabbitmq-on-google-cloud-how-to-install-and-run/
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq

3 Which Topic-based filtering DEBS? III

Overview of a prototypical software architecture with DEBS middleware

Kafka

AMQP

MQTT

Devices

Processing units

Edge
Computing

Fog
Computing

Cloud
Computing

/Cloudlets

Processing units

Processing units

29/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4 1st tech.: Topic-based filtering w/ OASIS
AMQP v.0.9.1

4.1 Overview of topic-based filtering of AMQP
4.2 Exchange, binding, and queue
4.3 Message and queue properties

Initially, a proposition made by JPMorgan Chase

The content of this section is extracted from

http://www.amqp.org/specification/0-9-1/amqp-org-download

and from

https://www.rabbitmq.com/getstarted.html.

30/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

http://www.amqp.org/specification/0-9-1/amqp-org-download
https://www.rabbitmq.com/getstarted.html

4.1 Overview of topic-based filtering of AMQP

"MyQueue"

Queue

Producer Consumer

"MyExchange"

Exchange

"*.MyRoutingKey.#"

type=topic

"MyVirtualHost"

Virtual host

"hello.MyRoutingKey"

Routing key Binding key

■ Lots of implementations: RabbitMQ, Apache Qpid, Microsoft Azure
IoT Hub, etc.

■ We propose to follow a tutorial on RabbitMQ

31/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://www.rabbitmq.com/
http://qpid.apache.org/

4.2 Exchange, binding, and queue

■ Queue = name for a “post box” that lives inside the AMQP server
• Messages are only stored inside a queue, never in exchanges
• A queue is essentially a large message buffer
• Many producers can send messages that go to one queue
• Many consumers can try to receive data from one queue

■ An exchange = A matching and routing engine
• It inspects notifications (headers), and using its binding tables, decides how to

forward these notifications to message queues or other exchanges

■ A binding key = A criteria for notification routing
■ A binding = A relationship (queue, exchange) with a binding key

32/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.2.1 Exchange of type “fan-out”

■ The “fan-out” exchange type implements channel-based filtering

• A message queue binds to the exchange with no arguments
− Nothing on the arrow/binding from the exchange to the queue

• A publisher sends notifications to the exchange
• The notification is passed to the message queue unconditionally

33/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.2.2 Exchange of type “direct”

■ The “direct” exchange type implements a simplistic form of topic-based
filtering

• A message queue binds to the exchange using a routing key K (a string)
• A publisher sends to the exchange a notification with the routing key R
• The notification is passed to the message queue if K = R

34/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.2.3 Exchange of type “topic”

■ The “topic” exchange type works as follows:
• A queue binds to the exchange using a binding key B as the routing pattern
• A publisher sends to the exchange a notification with the routing key R
• The notification is passed to the message queue if R matches B

■ Routing key used for a topic exchange = 0 or more words delimited by dots
■ Each word may contain [A–Z], [a–z], and [0–9],

or be equal to a joker (“*” or “#”)

■ The binding key follows the same rules as the routing key with:
“*” that matches a single word and “#” that matches 0 or more words

35/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.2.4 Message properties and emulation of RPC

■ Using message properties
• The AMQP 0-9-1 protocol defines a set of 14 message properties
• “deliveryMode”: Marks a message as persistent or transient
• “contentType”: Used to describe the mime-type of the encoding

(e.g. application/json)
• For a RPC-like call:

− “replyTo”: Commonly used to name a callback queue
− “correlationId”: Useful to correlate RPC responses with requests

36/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.3 Message and queue properties

■ Message acknowledgement

• What happens if a consumer fails while treating a message?
• Consumer can choose to autoAck or not

1. autoAck=true: Once delivered, the server immediately marks the message
for deletion
=⇒ May be lost if the consumer fails

2. autoAck=false: The server waits for an explicit acknowledgement
=⇒ Memory leakage if the consumer forgot to send the acknowledgement

■ Message durability and queue persistence

• When the server quits/crashes it forgets queues and messages unless told
to do so

• Two properties to make nearly sure that messages aren’t lost:
1. Mark both the queue and messages as “durable”
2. Mark messages of queue as “persistent”

37/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

4.3.1 More about message reliability

■ A server forgets the queues and messages unless it is told not to

■ Message reliability capabilities in a continuum:

1. Mark queues and messages as durable = eventually stored in database
− But, e.g., RabbitMQ doesn’t do fsync(2) for every message

• Messages may be just saved to cache and not really written to the disk
2. Clustering = Replicate broker for highly available queues (active replication)
− Not in the AMQP specification, but provided in RabbitMQ for instance

3. Publisher confirms =
− Consumers acknowledge the treatment of a message
− The broker sends a confirm message to the publisher

when all the clients have acknowledged

38/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5 2nd tech.: Topic-based filtering w/ OASIS
MQTT, IoT requirements

5.1 MQTT features
5.2 Topic filters w. wildcards and topic names
5.3 QoS—Message reliability
5.4 Disconnections

Initially, a proposition supported by IBM

The content of this section is extracted from

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

39/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

5.1 MQTT features

■ Initially, a proposition made by IBM

■ MQTT v.3.1: an OASIS standard in Oct. 2014
Then, MQTT v.3.1.1: an ISO/IEC standard (20922:20161) in June 2016
Today, MQTT v.5.0: OASIS Standard, March 2019

■ It runs over TCP/IP, or over other network protocols that provide ordered,
lossless, bidirectional connections

• MQTT-SN was proposed using UDP for sensor networks in which these
network conditions cannot be assumed

■ Topic-based filtering with 3 levels of Quality of Service / message reliability

■ Concept of sessions, in addition to connections

■ Popular implementations: Eclipse Mosquitto and Paho, Amazon IoT Core,
BevyWise, HiveMQ, Microsoft Azure IoT Hub, VerneMQ, etc.

1. https://www.iso.org/standard/69466.html

40/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://www.iso.org/standard/69466.html

5.2 Topic filters w. wildcards and topic names I

■ The forward slash (“/”) is used to separate each level within a topic tree
and provide a hierarchical structure to the topic names

■ Topic filter = an expression contained in a subscription

• ≈ AMQP binding key
• “#,+” can be used in topic filters similarly to AMQP’s “*” and “#”

■ Topic name = the label attached to a message that is matched against the
subscriptions

• ≈ AMQP routing key
• A broker can change the topic name of a published packet

41/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.2 Topic filters w. wildcards and topic names II
■ The plus sign (“+”) matches only one topic level

• The single-level wildcard can be used at any level in the Topic Filter, including
first and last levels

• Where it is used it must occupy an entire level of the filter
• E.g.

− “sport/tennis/+” matches “sport/tennis/player1” and
“sport/tennis/player2”, but not “sport/tennis/player1/ranking”

− “sport/+” does not match “sport” but it does match “sport/”
− “+” and “+/tennis/#” are valid
− “sport+” is not valid
− “/finance” matches “+/+” and “/+”, but not “+”.

• See the discovery Lab: Step 2.a, script run example topics sign plus.sh

42/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.2 Topic filters w. wildcards and topic names III
■ The number sign (“#”) matches any number of levels within a topic

• The multi-level wildcard represents the parent and any number of child levels
• “#” must be specified either on its own or following a topic level separator
• “#” must be the last character specified in the topic filter
• E.g.

− “sport/tennis/player1/#” matches “sport/tennis/player1”,
“sport/tennis/player1/ranking”, and
“sport/tennis/player1/score/wimbledon”

− “sport/#” matches “sport”, since “#” includes the parent level
− “sport/tennis#” is not valid
− “sport/tennis/#/ranking” is not valid

• See the discovery Lab: Step 2.b, script run example topics sign number.sh

43/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.2 Topic filters w. wildcards and topic names IV

■ Special character “$”

• Broker implementations may use topic names that start with a leading “$”
character for other purposes

− E.g. “$SYS/” has been widely adopted as a prefix to topics that contain
server-specific information or control APIs

• The broker must not match topic filters starting with a wildcard character
(“#” or “+”) with topic names beginning with “$”

• The broker should prevent clients from using such topic names to exchange
messages with other Clients

44/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3 QoS—Message reliability

■ Published messages have associated quality of service (QoS)

• QoS0/“At most once”: best efforts of the operating environment
− Message loss can occur
− Level used for example with ambient sensor data where it does not matter if

an individual reading is lost as the next one will be published soon after
• QoS1/“At least once”: assured to arrive but duplicates can occur
• QoS2/“Exactly once”: assured to arrive exactly once

=⇒ Client and broker store session state in order to provide QoS levels 1 and 2

■ A subscription contains a topic filter and a maximum QoS

• The broker might grant a lower maximum QoS than the subscriber requested
• When filters overlap, the delivery respects the maximum QoS of all the

matching subscriptions

45/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.1 Delivery of QoS0/“At most once” messages

■ QOS 0

• No storage of the message is performed by the sender
• No acknowledgment is sent by the receiver
• No retry is performed by the sender

■ The sender sends a publish packet
with QoS=0, DUP=02

■ The receiver accepts ownership of
the message when it receives the
publish packet

Sender Receiver

QoS=0, DUP=0

Deliver Application Message to

appropriate onward recipient(s)

Send PUBLISH with

1. The delivery protocol is concerned solely with the delivery of an application message
from a single sender to a single receiver
2. DUP is set to 1 when the sender knows it is a duplicate

46/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.2 Subscription and publication with
QoS0/“At most once”

■ In this scenario, let us consider that
the broker grants a maximum QoS0

■ A QoS1/“At least once” message
might either get lost or duplicated

■ A QoS2/“Exactly once” message
might get lost
but the broker should never send a
duplicate

■ See the discovery Lab: Step 3.a,
script run example qos 0.sh

Client1/Subscriber Client2/Producer

Subscribe message

QoS0/At most once
Broker grants

QoS0/At most once

Publish message

QoS0/At most once

Publish message

Publish message

Publish message

Publish message
Publish message

QoS1/At least once

QoS2/Exactly once

QoS0/At most once

might get lost or duplicated

Broker

might get lost

Subscribe message

QoS2/Exactly once

Broker grants
QoS0/At most once

Subscribe message

QoS1/At least once

QoS0/At most once
Broker grants

47/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.3 Delivery of QoS1/“At least once” messages
■ A QoS1 publish packet has an Id and is acknowledged
■ The sender may resend the message if no acknowledgement is received
■ The Sender:

1) assigns an Id and sends a publish packet containing Id, QoS=1, DUP=0

■ The Receiver:
1) acknowledges, having accepted ownership of the message
2) treats any incoming publish packet with same Id as being

a new publication, then forwarding it if the receiver is a broker
Sender Receiver

QoS=1, DUP=0, <Id>

Initiate onward delivery of the
Application Message (*1)

Send PUBLISH with

Send PUBACK <Id>

Discard message and <Id> (*2)

(*1) The receiver is not required to complete the delivery before sending the PUBACK

(*2) The sender knows that ownership of the message is transferred to the receiver

Store message with <Id>

48/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.4 Subscription and publication with
QoS1/“At least once”

■ The server grants a maximum
QoS1

■ A QoS0 message matching the
filter is delivered at QoS0/“At most
once”

■ A QoS2 message published to the
same topic is downgraded by the
server to QoS1

• Client might receive duplicate
copies of the message

■ See the discovery Lab: Step 3.b,
script run example qos 1.sh

Broker grants
QoS1/At least once

Broker grants
QoS1/At least once

Client1/Subscriber Client2/Producer

Subscribe message
QoS1/At least once

Subscribe message
QoS2/Exactly once

QoS0/At most once
Publish message

QoS0/At most once
Publish message

Publish message
Publish message

Publish message
Publish message

QoS1/At least once
QoS1/At least once

QoS1/At least once
QoS2/Exactly once

Broker

49/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.5 Delivery of QoS2/“Exactly once” messages
I

■ The receiver acknowledges receipt with a two-step acknowledgement process

■ The Sender:
1) assigns an Id and sends a publish packet containing Id, QoS=2, DUP=0
3) treats the publish packet as “unack” until it has received the PUBREC
4) sends a PUBREL (release) packet when it receives a PUBREC packet
5) treats the PUBREL packet as “unack” until it has received the PUBCOMP
(complete)
6) do not re-send the publish packet once it has sent the PUBREL

■ The Receiver:
1) responds with a PUBREC, having accepted ownership of the message
2) until it has received the corresponding PUBREL packet, acknowledges any
subsequent publish packet with the same PUBREC
3) responds to a PUBREL packet by sending a PUBCOMP

50/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.5 Delivery of QoS2/“Exactly once” messages
II

Sender Receiver

QoS=2, DUP=0, <Id>
Send PUBLISH with

Store message with <Id>

Send PUBREC <Id>

Send PUBREL <Id>

Send PUBCOMP <Id>

Discard <Id>

(*1) The sender knows that ownership of the message is transferred to the receiver

Store <Id> and then
initiate onward delivery

Receiver acknowledges content
i.e. asks for "stop sending content"

...sender may resend content

Discard message (*1) and
store PUBREC received <Id>

Sender stops resending content
Sender sends "<Id> can be released"

Discard <Id>, no more duplicate

Receiver sends "<Id> complete",
i.e. "<Id> can be removed"

51/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.3.6 Subscription and publication with
QoS2/“Exactly once”

■ The broker grants a maximum
QoS2

■ A topic filter at QoS 2 = delivery
of a message at the QoS with
which it were published

■ See the discovery Lab: Step 3.c,
script run example qos 2.sh

Client1/Subscriber Client2/ProducerBroker

Subscribe message
QoS2/Exactly once

Broker grants
QoS2/Exactly once

QoS0/At most once
Publish message

QoS0/At most once
Publish message

Publish message
Publish message

Publish message
Publish message

QoS1/At least once
QoS1/At least once

QoS2/Exactly once
QoS2/Exactly once

52/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.4 Disconnections

5.4.1 Sessions
5.4.2 RETAIN flag in a publish packet
5.4.3 Message ordering

53/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.4.1 Sessions

■ Session = A stateful interaction between a client and a broker

■ Some sessions last only as long as the network connection,
others can span multiple consecutive network connections

■ When a client connects with CleanStart set to 0,
it is requesting that the broker maintain its state after disconnection

■ When a client has determined that it has no further use for the session,
it should connect with CleanStart set to 1 and then disconnect

■ A broker is permitted to disconnect a client that it determines to be inactive
or non-responsive at any time

■ See the discovery Lab: Step 4, scripts run example clean start true.sh,
run example clean start false.sh, and
run example clean start false qos 1.sh

54/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.4.2 RETAIN flag in a publish packet

■ On a publish, if the RETAIN flag is set to 1,
the broker must store the message (and its QoS)
so that it can be delivered to future subscribers
whose subscriptions match its topic

• The client can mix publishing with and without the RETAIN flag set
• The retained message on the broker is the last received with the RETAIN flag

set
• RETAIN set + empty payload =⇒ broker removes previously retained message

■ When a new subscription is established, the last retained msg (if any) is
sent to the subscriber as it were the first message

■ See the discovery Lab: Step 5, script run example retained flag.sh

55/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

5.4.3 Message ordering

■ When a client reconnects with CleanStart set to 0 when connecting, both
the client and broker must re-send any unacknowledged publish packets
(where QoS>0) and PUBREL packets using their Ids

■ A broker must by default treat each topic as an “Ordered Topic”

• It may provide an administrative or other mechanism to allow one or more
topics to be treated as an “Unordered Topic”

56/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

6 3rd tech.: Topic-based filtering w/ Apache
Kafka, Event Sourcing

6.1 Cluster-based architecture
6.2 Topics as structured commit logs
6.3 Consumer groups
6.4 Fault tolerance
6.5 From Event Collaboration to CQRS

See https://kafka.apache.org/
and https://kafka.apache.org/quickstart

57/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://kafka.apache.org/
https://kafka.apache.org/quickstart

6.1 Cluster-based architecture

Image extracted from https://kafka.apache.org

■ Kafka is run as a cluster of servers that can span multiple datacenters

■ The Kafka cluster stores streams of records in categories called topics

■ Producers publish a stream of records to one or more Kafka topics

■ Consumers consume an input stream from one or more topics

58/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://kafka.apache.org

6.2 Topics as structured commit logs

Image extracted from https://kafka.apache.org

■ A topic = stream of records = partitioned log = structured commit log
■ Records are assigned a sequential id. number called the offset
■ Each partition is an ordered, immutable sequence of records that is

continually appended to
■ A partition must fit on the server that hosts it
■ A topic may have many partitions, each one acting as the unit of parallelism
■ Consumers can consume records in any order they like, but usually of the

time in ascending order

59/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://kafka.apache.org

6.3 Consumer groups

Image extracted from https://kafka.apache.org

■ Consumers join groups, which are labelled with a consumer group name
■ Typically, applications are structured/programmed as follows:
• Each record published to a topic is delivered to one consumer within each

subscribing consumer group
− If all the consumers are in the same group, then records are load balanced
− If all the consumers are in different groups, then records are replicated

60/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://kafka.apache.org

6.4 Fault tolerance

■ Each partition is replicated across a configurable number of hosts

■ One host acts as the “leader” and the others act as “followers”

• Usually, each host acts as a leader for some of its partitions and as a follower
for others

■ The process of maintaining membership in the group is handled by Kafka
dynamically

• If an instance joins a group, it takes over partitions from existing instances
• If an instance dies, its partitions are distributed to the remaining instances

■ Total order over records within a partition, not between different partitions
in a topic

61/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

6.5 From Event Collaboration to CQRS

6.5.1 Design pattern “Event Collaboration”
6.5.2 Design pattern “Event Sourcing”
6.5.3 Design pattern “Command Query Responsability Segregation”

62/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

6.5.1 Design pattern “Event Collaboration”

Image from B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka”, O’Reilly, 2018

■ https://martinfowler.com/eaaDev/EventCollaboration.html

■ Each (micro-)service listens events and creates new events

■ No service knows the other services nor owns the entire workflow

• This is called a choregraphy
̸= An orchestration, in which a process controls the whole workflow

63/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://martinfowler.com/eaaDev/EventCollaboration.html

6.5.2 Design pattern “Event Sourcing”

B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka”, O’Reilly, 2018.

■ https://martinfowler.com/eaaDev/EventSourcing.html

■ Use Kafka as a data store of the events in the order of their creation
• Make the events “the source of truth”: include commands into Kafka log

■ Fault-tolerance using passive replication by rollback recovery
• Consider (micro-)services that have a pseudo-deterministic execution

− Any state of the execution can be computed from an initial state and the
sequence of events that leads to this state

• Periodic creation of snapshots + replay of events in order
64/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://martinfowler.com/eaaDev/EventSourcing.html

6.5.3 Design pattern “Command Query Respon-
sability Segregation”

Image from B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka”, O’Reilly, 2018

■ https://martinfowler.com/eaaDev/EventSourcing.html

■ Separate the write path from the read path and links them with an
asynchronous channel

■ Provide adequate view(s) of the (micro-)service and query the view(s)

65/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

https://martinfowler.com/eaaDev/EventSourcing.html

7 Conclusion I
■ Distributed Event-Based Systems for acquiring data

■ Other names of this architectural style: Distributed Publish Subscribe
System, Distributed Messaging Service

■ Interaction mode = event-based

• Producers initiate the exchanges of data (push mode)
• Producers do not know the potential consumers when pushing

■ Properties of this architectural style =

• Space decoupling: Producers and consumers do not know each others
• Time decoupling: Producers and consumers do not need to be active at the

same time
• Synchronisation decoupling: asynchronous communication

(producers and consumers are not blocked while producing or being notified,
respectively)

66/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

7 Conclusion II
■ In the order of the presentation

• AMQP and MQTT = server-based architecture using topic-based filtering
• AMQP proposes three types of exchanges:

− “fan-out” = broadcast functionality
− “direct” = string equality as a very simple matching algorithm
− “topic” = topic-based filtering with meta-characters to match a single word

or more words
• MQTT comes in addition with QoS:

− 0/“at most once” = best effort
− 1/“at least once” = assured to arrive but duplicates can occur
− 2/“exactly once” = assured to arrive exactly once

• Kafka looks more like a distributed commit logging system
− A topic is a set of partitions, which are append-only files
− More stream-oriented than topic-based

67/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

7 Conclusion III
■ Kafka for stream processing, data

integration, stable network and
good infrastructure

■ AMQP for AMQP consortium, high
throughput, high availability

■ MQTT for ISO standard,
lightweight, poor connectivity, high
latency, disconnections and
reconnections

Kafka

AMQP

MQTT

Devices

Processing units

Edge
Computing

Fog
Computing

Cloud
Computing

/Cloudlets

Processing units

Processing units

68/68 09/2024 Denis Conan Distributed Event-Based System — AMQP, MQTT, and Kafka

	Motivations and objectives/requirements
	E.g. IoT platforms
	E.g. Web services with ``Event sourcing''
	E.g. Life-cycle of data-driven machine learning applications
	E.g. Autonomic computing—MAPE-K loop
	E.g. Control theory—SISO loop
	Requirements

	Definition of Event-Based Systems
	Models of interaction and EBS
	Constituents of an EBS
	Notification filtering mechanisms

	Which Topic-based filtering DEBS?
	1st tech.: Topic-based filtering w/ OASIS AMQP v.0.9.1
	Overview of topic-based filtering of AMQP
	Exchange, binding, and queue
	Message and queue properties

	2nd tech.: Topic-based filtering w/ OASIS MQTT, IoT requirements
	MQTT features
	Topic filters w. wildcards and topic names
	QoS—Message reliability
	Disconnections

	3rd tech.: Topic-based filtering w/ Apache Kafka, Event Sourcing
	Cluster-based architecture
	Topics as structured commit logs
	Consumer groups
	Fault tolerance
	From Event Collaboration to CQRS

	Conclusion

