SudParis
et i

N2 1P PARIS

Distributed Event-Based
System — AMQP, MQTT,
and Kafka

Denis Conan

September 2024

Nl Outline

1
2
3
4
5
6
7

. Motivations and objectives/requirements

. Definition of Event-Based Systems

. Which Topic-based filtering DEBS?

. 1st tech.: Topic-based filtering w/ OASIS AMQP v.0.9.1

. 2nd tech.: Topic-based filtering w/ OASIS MQTT, loT requirements
. 3rd tech.: Topic-based filtering w/ Apache Kafka, Event Sourcing

. Conclusion

TeLEcom|

CETT

_ Foreword

B The content of these slides is extracted from the following references:

® P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec “The Many
Faces of Publish/Subscribe”, ACM Computing Surveys, 35(2), June 2003.

® G. Mihl, L. Fiege, and P. Pietzuch “Distributed Event-Based Systems”,
Springer-Verlag, 2006.

® E. Al-Masri, K.R. Kalyanam, J. Batts, J. Kim, S. Singh, T. Vo, and C. Yan.
“Investigating Messaging Protocols for the Internet of Things (loT)", IEEE

Access, pages 94880-94911, April 2020.

® OASIS AMQP Consortium, “AMQP: Advanced Message Queuing Protocol”,
Version 0-9-1, Protocol specification, OASIS Consortium, November 2008.

® B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for
Streaming Services with Apache Kafka", O'Reilly, 2018.

http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
https://www.amqp.org/specification/0-9-1/amqp-org-download
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://kafka.apache.org/documentation/

I 1 Votivations and objectives/requirements

Foreword: We consider distributed architectures with application-layer messaging systems

1.1 E.g. loT platforms

1.2 E.g. Web services with “Event sourcing”

1.3 E.g. Life-cycle of data-driven machine learning applications
1.4 E.g. Autonomic computing—MAPE-K loop

1.5 E.g. Control theory—SISO loop

1.6 Requirements

Distributed Event-Based System — AMQP, MQTT, and Kafka 9

N 1.1 E.g. loT platforms |

B Communicate with lots of devices that are volatile
= Scalability (#clients, #events)

+ Space-, time-, and synchronisation-decoupling

B E.g., Amazon loT platform

il s

and received using the MQTT

,‘
©
@
¥

Devices publish & subscribe protocol which minimizes the Devices communicate
Billions of devices can publish code footprint on the device AWS IoT Core enables devices
and subscribe to messages and reduces network to communicate with AWS

bandwidth requirements services and each other

https://aws.amazon.com/fr/iot-core/

@ e

https://aws.amazon.com/fr/iot-core/

I 1.1 Ec. 10T platforms 11

B E.g. Microsoft Azure reference architecture

10T Edge

devices

Device
management

loT devices

Bulk device
provisioning

loT DPS

Things

Cloud
gateway

X

loT Hub

Stream processing and
tules evaluation over data

i)

User
management
Ul reporting
and tools
Azure AD

I

Stream processing

Visualize data and learnings

Business
integration

Logic App

A
=
Stream
Analytics
Data Warm path Cold path Machine
transformation | store data store store learning
&] i
Azure Machine
Function App Cosmos DB Storage blob Learning
Integrate with business processes
Insights Action

One of the previous version of

https://docs.microsoft.com/fr-fr/azure/architecture/reference-architectures/iot

Distr

uted Event-Based System

AMQP, MQT

https://docs.microsoft.com/fr-fr/azure/architecture/reference-architectures/iot

N E.g. Web services with “Event sourcing”

B Routing, event-driven for high performance,
scalability (number of events per second, GB per second)

...... » Subscription data S -
ubscribers
—> Publication events

> PullRequest
3 7

Spotify Backend vy | [vy

D (YA)
: Publishers 1 T
~T3|Presence Service \, Pub/Sub Engine (Noﬁﬁcation Service)

3)]
: ! *
. 5] playlist Service - 5 Rule Engine

v \ .i Cassandra
I3 Social Service |1 - 3 Cluster

External

Database| | (Artist Monitoring:|
D Service Notification Module

Old architecture from V. Setty, et al., The Hidden Pub/Sub of Spotify (Industry Article). ACM DEBS'13, 2013

Internet

v T

@ e

N | 3 E.g. Life-cycle of data-driven machine learn-
ing applications

B On the right, execution of the application on a target machine

® Prediction on collected data (real and not annotated)

Features Model
Model
Development
Data Test
Ir% -
: Collect Run
& configure
Model
Serving
Update Monitor

Feedback

P. Lalanda. Edge Computing and Learning. In M. Kirsch Pinheiro et al (editors), The Evolution of Pervasive Information Systems, Springer, 2023

Distributed Event-Based System — AMQP, MQTT, and Kafka

‘ @ e

N 1 .4 E.g. Autonomic computing—MAPE-K loop

B Model of the architecture at runtime for self-management:
i.e. self-configuration, self-optimization, self-healing, and self-protection

B MAPE-K: Monitor, Analyze, Plan, Execute, Knowledge

Autonomic manager

Managed element

J. Kephart et al. The Vision of Autonomic Computing. |IEEE Computer, 36(1):41-50, 2003.

I | 5 E.g. Control theory—SISO loop

B E.g., General model of a Single-Input Single-Output feedback control system

System
Reference Error Inout
NS _ Controller P System Output .
RY 4 e o — i P | o
Sensor
F(s)

P. Lalanda, J.A. McCann, and A. Diaconescu. Autonomic Computing. Springer, 2014.
A. Filieri, et al.. Software Engineering Meets Control Theory. In Proc. of the IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages 71-82, May 2015.

Distributed Event-Based System — AMQP, MQTT, and Kafka @) T ove

N | - Requirements

B Data production/consumption decoupling
® Space decoupling: producers and consumers are distributed
® Synchronisation decoupling: asynchronous and anonymous communication

® Time decoupling: production and consumption at different times

B Scalability: in messages per second, in data per second, in clients (producers
and consumers) at a given instant

B Data life-cycle management + filtering

® Aggregation is out of the scope (it is called complex event processing and
streaming)

B Adaptation to mobile, volatile, and heterogeneous environments

B One name for many “technologies”: distributed event-based systems,
distributed publish-subscribe systems, distributed messaging service,
message-oriented middleware, active databases, etc.

I > Definition of Event-Based Systems

2.1 Models of interaction and EBS
2.2 Constituents of an EBS
2.3 Notification filtering mechanisms

Distributed Event-Based System — AMQP, MQTT, and Kafka

B > 1 Models of interaction and EBS

2.1.1 *“Request/Reply”

2.1.2 *Anonymous Request/Reply”

2.1.3 "Callback”

2.1.4 Studied in this lecture: “Event-Based”
2.1.5 Recap: Models of interaction and EBS

Distributed Event-Based System — AMQP, MQTT, and Kafka

I 2 1.1 “Request/Reply”

p:Producer

B The consumer initiates the interaction
B The consumer knows the address of the producer for issuing the request
B The consumer waits for the reply: the call is synchronous

B The producer knows the address of the consumer

N > 12 “Anonymous Request/Reply”

| sl:Server || s2:Server H s3:Server
1 1 1

| |
To whatever producer : :
can provide the data

B The consumer initiates the interaction without knowing the address of the
potential producers: there is an intermediate “entity” or “mechanism”

B The producers that can provide the requested data receive the request

The producers reply to the consumer,
i.e. they know the address of the consumer

B The consumer is willing to receive several replies

o2 Distiuted Even- Baed System — AMQP, MQTT, and Katka |22

I 2>.1.3 “Callback”

«new»
dh:DataHandler

T
| updateData
. s
| updateData
. .
I

B This is the Observable Observer design pattern

B The consumer creates a data handler to manage registration and receptions
B The consumer knows the address of the producer and registers with it

B The producer sends the data updates to the consumer

B Consumer and DataHandler in the same process = multi-threading

@ e

_2.1.4 Studied in this lecture: “Event-Based”

c:Consumer | pubsub:PubSubSystem | l pl:Producer ‘ l p2:Producer ‘

«new»

% dh:DataHandler
subscribe)
<

I
I
I
I
I
- —— } publish {j
T
I
I
T
I
I
I

[
|
|
|
|
|
|
T T |
I ! |
i L‘] ' publish E:]
| | |
This is the Publish Subscribe design pattern
The consumer and the producers know the address of the PubSubSystem

The consumer subscribes a filter to the PubSubSystem

The producers publish data to the PubSubSystem

The PubSubSystem applies subscription filters to route data and notify the
relevant consumers

Distributed Event-Based System — AMQP, MQTT, and Kafka 9

I > 15 Recap: Models of interaction and EBS

B |nitiator: describes whether the consumer or the provider initiates the
interaction

B Addressing: indicates whether the addressee of the interaction is known or
unknown at the beginning of the interaction

Initiator
Consumer | Provider

Adressee | Direct Request/Reply Callback
Indirect || Anonymous Re- | Event-Based
quest/Reply

B The trade-off is between the simplicity of request/reply and the flexibility of
event-based interaction

Distributed Event-Based System — AMQP, MQTT, and Kafka 9

N - - Constituents of an EBS

Event
Producer Consumer
2. publish (N) 3. notify (N)
1.b. subscribe (F’)
F, F’ : Filters [optional]

1a. ise (F
N : Notification a. advertise (F)

Publish/Subscribe interface

We do not detail the advertise operation in this lecture.

I - > 1 Terminology

B Event : any happening of interest that can be observed from within a
computer

® Event example: physical event, timer event, etc.
B Notification: an object that contains data describing the event
B Producer: a component that publishes notifications

B Consumer: a component that reacts to notifications delivered to them by
the notification service

B Subscription: describes a set of notifications a consumer is interested in

B Advertisement: is issued by a producer to declare the notifications it is
willing to send

N > 2 Publish /subscribe interface

B Specifies the functionalities for decoupling producers from consumers
B Proposes the following operations:

e publish(n): a producer pushes notification n to the notification service

e advertise(F): a producer advertises that it will send notifications that match
the filter F

— We do not detail the advertise operation in this lecture.

e subscribe(F): a consumer subscribes to receive notifications that match the
filter F

e notify(n): the notification service delivers the notification n to those
consumers that have a matching subscription

I > 3 Notification filtering mechanisms

2.3.1 Channels-based filtering

2.3.2 Topic-based (a.k.a. subject-based) filtering
2.3.3 Content-based filtering

2.3.4 (Type-based filtering)

N 2 3.1 Channels-based filtering

B Producers select a channel into which a notification is published

B Consumers select a channel and will get all notifications published therein

B The message is “opaque” to the event-based service

B Framework examples: CORBA Event Service, CORBA Notification Service,
OASIS AMQP standard v 0.9.1 (emulated in exchange mode “fanout™)...

OO

m1 m2

m1, m2

LondonStockMarket

1
1
1
1
1
1
1
Stock quotes ﬁ

[Technology

1 Publish
1
{Subscribe

Ii Notify

P Publisher
S Subscriber

I > 3.2 Topic-based (a.k.a. subject-based) filtering

B Uses string matching for notification selection with jokers

B Each notification and subscription is defined as a rooted path in a tree of
topics
B Example:
® A stock exchange application publishes new quotations of FooBar under the
topic: /Exchange/Europe/London/Technology/FooBar
" Consumers subscribe for /Exchange/Europe/London/Technology/* to get all
technologies quotations

B The subject or topic is in message header, the content is “opaque”

B Example of solution: OASIS AMQP standard version 0.9.1 (exchange mode
“topic”), OASIS MQTT standard version 3.1.1, TIBCO Rendezvous, JMS
(Java Message Queue), WebSphere MQ Publish/Subscribe (WMQPS),
Apache Kafka, Apache Qpid, Spring/Pivotal RabbitMQ, Amazon loT Core,
Microsoft Azure loT Hub...

Distributed Event-Based System — AMQP, MQTT, and Kafka

I > 3.3 Content-based filtering

B Filters are evaluated on the whole content of notifications

B Example solutions: template matching, extensible filter expressions on name
value pairs, XPath expressions on XML schemas, etc.

B Example for the structured-record data model:
A publication is a set of pairs: m1 = {(company,“Telco"), (price, 120)}
my = {(company,"Telco"), (price, 90)}
A filter is a conjunction of triples: F = {(company,=,"Telco"), (price, <, 100)}

1 Publish
: m2 1

! ; Subscribe
| ?

: Notify

y P Publisher

[LondonStockMarket] S Subscriber

I 2 .3.4 (Type-based filtering)

B Uses subtype inclusion to select notifications

B |f 3 consumer subscribes to the type StockQuote, it will receive
Technology quotations and other notifications that are sub-types of

StockQuote

LondonStockMarket
JAN

‘ StockQuote ‘

‘ Technology ‘ ‘ ‘

B All the producers and consumers must agree on the hierarchy of types
= Not flexible at all, thus not used = the title in brackets

N 3 \\Which Topic-based filtering DEBS? |
B Reminder: We study application-layer distributed-event based systems
B Topic-based filtering = filtering currently used by IT industry

® Channels-based filtering: previous middleware like CORBA
® Type-based filtering: not usable

® Content-based filtering: more for complex event processing and streaming

1. OASIS AMQP: introduce the concept of “broker”
2. OASIS MQTT: introduce constraints from the Internet of Things

3. Apache Kafka: introduce design patterns “Event Sourcing” and
“Collaboration”

Distributed Event-Based System — AMQP, MQTT, and Kafka

I 3 \Which Topic-based filtering DEBS? Il

In this slide, let's take the application domain of the loT

B XMPP
CoAP
mAMQP
=MQTT
W HTTPS
z\é\ \\z@ Q\oﬂ‘o Q\o" (\é\c «Q\\;o & (\\0« (Jd\z (Jd‘z
S PR I R
[R R N o & ® o e
& ¢ & (o4 & v S &
&° pe \Q$ v

http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
http://www-inf.telecom-sudparis.eu/COURS/FC-PSIOT/DocumentsReferences/2020-Al-Masri-MessagingProtocols-for-the-IoT.pdf
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/welcome.html
https://bluemedora.com/rabbitmq-on-google-cloud-how-to-install-and-run/
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq

I 3 \Which Topic-based filtering DEBS? 111
Overview of a prototypical software architecture with DEBS middleware

Cloud
Computing

Processing units

® o

Fog

O Computing
O O [Cloudlets

O Edge

Computing

I 1 1st tech.: Topic-based filtering w/ OASIS
AMQP v.0.9.1

4.1 Overview of topic-based filtering of AMQP
4.2 Exchange, binding, and queue
4.3 Message and queue properties

Initially, a proposition made by JPMorgan Chase

The content of this section is extracted from
http://www.amqgp.org/specification/0-9-1/amqp-org-download

and from

https://www.rabbitmq.com/getstarted.html.

http://www.amqp.org/specification/0-9-1/amqp-org-download
https://www.rabbitmq.com/getstarted.html

I 1.1 Overview of topic-based filtering of AMQP

i Exchange
i "MyExchange"

Queue
|
Routing key "MyQueue"

"hello.MyRoutingKey/

Binding key
* MyRoutingKey.#"

Producer

Consumer

type=topic Virtual host |
"MyVirtualHost" '

loT Hub, etc.

B We propose to follow a tutorial on RABBITMQ

Distributed Event-Based System — AMQP, MQTT, and Kafka @) T ove

CETT

https://www.rabbitmq.com/
http://qpid.apache.org/

N Exchange, binding, and queue

B Queue = name for a “post box" that lives inside the AMQP server

® Messages are only stored inside a queue, never in exchanges

® A queue is essentially a large message buffer

® Many producers can send messages that go to one queue

® Many consumers can try to receive data from one queue

B An exchange = A matching and routing engine

® It inspects notifications (headers), and using its binding tables, decides how to

forward these notifications to message queues or other exchanges
B A binding key = A criteria for notification routing

B A binding = A relationship (queue, exchange) with a binding key

I 2.1 Exchange of type “fan-out”

amg. gen-RQ6...

ama.gen-Asg...

B The “fan-out” exchange type implements channel-based filtering

® A message queue binds to the exchange with no arguments

Nothing on the arrow/binding from the exchange to the queue

® A publisher sends notifications to the exchange

The notification is passed to the message queue unconditionally

o2 Distiuted Even- Baed System — AMQP, MQTT, and Katka |22

I 2 2 Exchange of type “direct”

amgp.gen-59b...

info amagp.gen-Agl...

B The “direct” exchange type implements a simplistic form of topic-based
filtering

® A message queue binds to the exchange using a routing key K (a string)

® A publisher sends to the exchange a notification with the routing key R

® The notification is passed to the message queue if K = R

I /0 3 Exchange of type “topic”

Q1

type=topic *.crange*

* . rabhit Q2

B The “topic” exchange type works as follows:

® A queue binds to the exchange using a binding key B as the routing pattern
® A publisher sends to the exchange a notification with the routing key R
® The notification is passed to the message queue if R matches B

B Routing key used for a topic exchange = 0 or more words delimited by dots

B Each word may contain [A-Z], [a-z], and [0-9],
or be equal to a joker (“*" or “#")

B The binding key follows the same rules as the routing key with:
“x" that matches a single word and “#" that matches 0 or more words

I 4 0 4 Message properties and emulation of RPC

B Using message properties

® The AMQP 0-9-1 protocol defines a set of 14 message properties
® “deliveryMode"”: Marks a message as persistent or transient
L]

“contentType”: Used to describe the mime-type of the encoding
(e.g. application/json)

® For a RPC-like call:

“replyTo”: Commonly used to name a callback queue

“correlationId”: Useful to correlate RPC responses with requests

rpc_gueus

. Request
Client reply_to—amqp.genXa2..

: correlaion_id=abc

Server

reply_to=amg.genxaz2...

Reply
correlaion_id=abc

N - s Message and queue properties

B Message acknowledgement

® What happens if a consumer fails while treating a message?

® Consumer can choose to autoAck or not

1. autoAck=true: Once delivered, the server immediately marks the message
for deletion
—> May be lost if the consumer fails

2. autoAck=false: The server waits for an explicit acknowledgement
= Memory leakage if the consumer forgot to send the acknowledgement

B Message durability and queue persistence

® When the server quits/crashes it forgets queues and messages unless told
to do so
® Two properties to make nearly sure that messages aren't lost:

1. Mark both the queue and messages as “durable”
2. Mark messages of queue as “persistent”

I 2 3.1 More about message reliability

B A server forgets the queues and messages unless it is told not to
B Message reliability capabilities in a continuum:

1. Mark queues and messages as durable = eventually stored in database

But, e.g., RabbitMQ doesn't do £sync(2) for every message
e Messages may be just saved to cache and not really written to the disk

2. Clustering = Replicate broker for highly available queues (active replication)
— Not in the AMQP specification, but provided in RabbitMQ for instance
3. Publisher confirms =
Consumers acknowledge the treatment of a message

— The broker sends a confirm message to the publisher
when all the clients have acknowledged

I 5 2nd tech.: Topic-based filtering w/ OASIS
MQTT, loT requirements

5.1 MQTT features

5.2 Topic filters w. wildcards and topic names
5.3 QoS—Message reliability

5.4 Disconnections

Initially, a proposition supported by IBM

The content of this section is extracted from

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

Distributed Event-Based System — AMQP, MQTT, and Kafka

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

_5.1 MQTT features

B |nitially, a proposition made by IBM

B MQTT v.3.1: an OASIS standard in Oct. 2014
Then, MQTT v.3.1.1: an ISO/IEC standard (20922:2016%) in June 2016
Today, MQTT v.5.0: OASIS Standard, March 2019

B [t runs over TCP/IP, or over other network protocols that provide ordered,
lossless, bidirectional connections

® MQTT-SN was proposed using UDP for sensor networks in which these

network conditions cannot be assumed
B Topic-based filtering with 3 levels of Quality of Service / message reliability
B Concept of sessions, in addition to connections

B Popular implementations: Eclipse Mosquitto and Paho, Amazon loT Core,
BevyWise, HiveMQ, Microsoft Azure loT Hub, VerneMQ, etc.

s://wuw.iso.org/standard/69466.html

https://www.iso.org/standard/69466.html

N - > Topic filters w. wildcards and topic names |

B The forward slash (/") is used to separate each level within a topic tree
and provide a hierarchical structure to the topic names

B Topic filter = an expression contained in a subscription
® ~ AMQP binding key
® “#,+" can be used in topic filters similarly to AMQP’s “x” and “#"

B Topic name = the label attached to a message that is matched against the
subscriptions

® =~ AMQP routing key

® A broker can change the topic name of a published packet

Distributed Event-Based System — AMQP, MQTT, and Kafka

N - > Topic filters w. wildcards and topic names Il

B The plus sign (“+") matches only one topic level

® The single-level wildcard can be used at any level in the Topic Filter, including

first and last levels
® Where it is used it must occupy an entire level of the filter

" Eg

“sport/tennis/+" matches “sport/tennis/playerl” and
“sport/tennis/player2”, but not “sport/tennis/playerl/ranking”

“sport/+" does not match “sport” but it does match “sport/”
— “+" and "+/tennis/#" are valid
“sport+" is not valid

— “/finance” matches “+/+" and “/+", but not “+".

¥ See the discovery Lab: Step 2.a, script run_example_topics_sign plus.sh

N - > Topic filters w. wildcards and topic names 1l

B The number sign (“#") matches any number of levels within a topic

® The multi-level wildcard represents the parent and any number of child levels
" “#" must be specified either on its own or following a topic level separator

" “#" must be the last character specified in the topic filter

u

E.g.
— ‘“sport/tennis/playerl/#" matches “sport/tennis/playerl”,
“sport/tennis/playerl/ranking”, and
“sport/tennis/playerl/score/wimbledon”

“sport/#" matches “sport”, since "#" includes the parent level
“sport/tennis#" is not valid

“sport/tennis/#/ranking” is not valid

® See the discovery Lab: Step 2.b, script run_example_topics_sign number.sh

I - > Topic filters w. wildcards and topic names IV

B Special character “$”

® Broker implementations may use topic names that start with a leading “$"
character for other purposes
— E.g. "$3YS/" has been widely adopted as a prefix to topics that contain
server-specific information or control APls
® The broker must not match topic filters starting with a wildcard character
(“#" or “4") with topic names beginning with “$"
n

The broker should prevent clients from using such topic names to exchange
messages with other Clients

N s QoS—Message reliability

W Published messages have associated quality of service (QoS)

B QoS0/“At most once”: best efforts of the operating environment

Message loss can occur

Level used for example with ambient sensor data where it does not matter if
an individual reading is lost as the next one will be published soon after

n QoS1/*“At least once”: assured to arrive but duplicates can occur
B QoS2/“Exactly once”: assured to arrive exactly once

— Client and broker store session state in order to provide QoS levels 1 and 2
B A subscription contains a topic filter and a maximum QoS

® The broker might grant a lower maximum QoS than the subscriber requested

® When filters overlap, the delivery respects the maximum QoS of all the
matching subscriptions

a Distributed Event-Based System — AMQP, MQTT, and Kafka -g"

N - 3 1 Delivery of QoS0/“At most once” messages

B Q0SO0

® No storage of the message is performed by the sender
® No acknowledgment is sent by the receiver

® No retry is performed by the sender

B The sender sends a publish packet

Wlth QOS=O DUP=O2 Sender Receiver

. i Send PUBLISH with
B The receiver accepts ownership of Q0S=0, DUP=0
the message when it receives the
publish packet

Deliver Application Message to
appropriate onward recipient(s)

1. The delivery protocol is concerned solely with the delivery of an application message
from a single sender to a single receiver
2. DUP is set to 1 when the sender knows it is a duplicate

N s s 0 Subscription

QoS0/“At most once”

B |n this scenario, let us consider that
the broker grants a maximum QoS0

B A QoS1/"At least once” message
might either get lost or duplicated

B A QoS2/"Exactly once” message
might get lost
but the broker should never send a
duplicate

B See the discovery Lab: Step 3.a,
script run_example_qos_0.sh

and publication with

Client1/Subscriber Broker

Subscribe message
QoS2/Exactly once

Brok
QoS0/A

Subscribe message
QoS1/At least once

Brok
QoS0/A

Subscribe message
QoS0/At most once

Brok
QoS0/A

Publish message
QoS0/At most once

Publish message
might get lost or duplicated

er grants
\t most once

er grants
t most once

er grants
t most once

Client2/Producer

Publish message
QoS0/At most once

Publish message
QoS1/At least once

Publish message
might get lost

Publish message
QoS2/Exactly once

@ e

N - s 3 Delivery of QoS1/“At least once” messages

B A QoS1 publish packet has an Id and is acknowledged

B The sender may resend the message if no acknowledgement is received

B The Sender:
1) assigns an Id and sends a publish packet containing Id, QoS=1, DUP=0

B The Receiver:
1) acknowledges, having accepted ownership of the message
2) treats any incoming publish packet with same Id as being
a new publication, then forwarding it if the receiver is a broker

Sender Receiver

Store message with <ld> Send PUBLISH with

QoS=1, DUP=0, <Id>

Initiate onward delivery of the
Application Message (*1)
Send PUBACK <Id>

Discard message and <Id> (*2)

(*1) The receiver is not required to complete the delivery before sending the PUBACK
(*2) The sender knows that ship of the is to the receiver

@ e

I 5 5 4

Subscription

and

QoS1/“At least once”

B The server grants a maximum

QoS1

B A QoSO message matching the
filter is delivered at QoS0/“At most
once”

B A QoS2 message published to the
same topic is downgraded by the
server to QoS1

® Client might receive duplicate

copies of the message

B Sece the discovery Lab: Step 3.b,
script run_example_qos_1.sh

Client1/Subscriber

Subscribe message
QoS2/Exactly once

Brok
QoS1/A

Subscribe message
QoS1/At least once

Brok
QoS1/A|

Publish message
QoS0/At most once

Publish message
QoS1/At least once

er gr
t lea

er gr:
t leas

Publish message
QoS1/At least once

publication

Broker

ants
st once

nts
t once

with

Client2/Producer

Publish message
QoS0/At most once

Publish message
QoS1/At least once

Publish message
QoS2/Exactly once

@ e

N s 3 5 Delivery of QoS2/*“Exactly once” messages
I

B The receiver acknowledges receipt with a two-step acknowledgement process

B The Sender:
1) assigns an Id and sends a publish packet containing Id, QoS=2, DUP=0
3) treats the publish packet as “unack” until it has received the PUBREC
4) sends a PUBREL (release) packet when it receives a PUBREC packet
5) treats the PUBREL packet as “unack” until it has received the PUBCOMP
(complete)
6) do not re-send the publish packet once it has sent the PUBREL

B The Receiver:
1) responds with a PUBREC, having accepted ownership of the message
2) until it has received the corresponding PUBREL packet, acknowledges any
subsequent publish packet with the same PUBREC
3) responds to a PUBREL packet by sending a PUBCOMP

Distributed Event-Based System — AMQP, MQTT, and Kafka 9

N s 3 5 Delivery of QoS2/*“Exactly once” messages

Sender

Store message with <ld>

...sender may resend content

Discard message (*1) and

store PUBREC received <ld>

Sender stops resending content
Sender sends "<Id> can be released”

Discard <ld>

Send PUBLISH with
QoS=2, DUP=0, <ld>

Send PUBREC <Id>

Send PUBREL <ld>

Send PUBCOMP <Id>

Receiver

Store <Id> and then
initiate onward delivery

Receiver acknowledges content
i.e. asks for "stop sending content”

Discard <ld>, no more duplicate

Receiver sends "<ld> complete”,
i.e. "<ld> can be removed"

(*1) The sender knows that ownership of the message is transferred to the receiver

@ e

I 5 .3 6

Subscription

and

QoS2/*“Exactly once”

B The broker grants a maximum

QoS2

B A topic filter at QoS 2 = delivery
of a message at the QoS with
which it were published

B Sece the discovery Lab: Step 3.c,
script run_example_qos_2.sh

Client1/Subscriber

Subscribe message
QoS2/Exactly once

Brok

er gr

publication

Broker

ants

QoS2/E

Publish message
QoS0/At most once

Publish message
QoS1/At least once

Publish message
QoS2/Exactly once

xact

y once

with

Client2/Producer

Publish message
QoS0/At most once

Publish message
QoS1/At least once

Publish message
QoS2/Exactly once

Distributed Event-Based System — AMQP, MQTT, and Kafka

@ e

_ 5.4 Disconnections

5.4.1 Sessions
5.4.2 RETAIN flag in a publish packet
5.4.3 Message ordering

Distributed Event-Based System — AMQP, MQTT, and Kafka

Lo

Nl 5.4.1 Sessions

B Session = A stateful interaction between a client and a broker

B Some sessions last only as long as the network connection,
others can span multiple consecutive network connections

B When a client connects with CleanStart set to 0,
it is requesting that the broker maintain its state after disconnection

B When a client has determined that it has no further use for the session,
it should connect with CleanStart set to 1 and then disconnect

B A broker is permitted to disconnect a client that it determines to be inactive
or non-responsive at any time

B See the discovery Lab: Step 4, scripts run_example_clean start_true.sh,
run_example_clean_start_false.sh, and
run_example_clean_start_false_qos_1.sh

BN 5 4.2 RETAIN flag in a publish packet

B On a publish, if the RETAIN flag is set to 1,
the broker must store the message (and its QoS)
so that it can be delivered to future subscribers
whose subscriptions match its topic

® The client can mix publishing with and without the RETAIN flag set

® The retained message on the broker is the last received with the RETAIN flag
set

® RETAIN set + empty payload = broker removes previously retained message

B When a new subscription is established, the last retained msg (if any) is
sent to the subscriber as it were the first message

B See the discovery Lab: Step 5, script run_example retained flag.sh

\

N - 3 Message ordering

B When a client reconnects with CleanStart set to 0 when connecting, both
the client and broker must re-send any unacknowledged publish packets
(where QoS>0) and PUBREL packets using their Ids

B A broker must by default treat each topic as an “Ordered Topic”

® It may provide an administrative or other mechanism to allow one or more

topics to be treated as an “Unordered Topic”

I 6 3d tech.: Topic-based filtering w/ Apache
Kafka, Event Sourcing

6.1 Cluster-based architecture

6.2 Topics as structured commit logs
6.3 Consumer groups

6.4 Fault tolerance

6.5 From Event Collaboration to CQRS

See https://kafka.apache.org/
and https://kafka.apache.org/quickstart

Distributed Event-Based System — AMQP, MQTT, and Kafka

https://kafka.apache.org/
https://kafka.apache.org/quickstart

_6.1 Cluster-based architecture

Producers

=]

o

Connectors

Kafka
Cluster

DB

Stream
Processors

App

Consumers

Image extracted from https://kafka.apache.org

B Kafka is run as a cluster of servers that can span multiple datacenters
B The Kafka cluster stores streams of records in categories called topics
B Producers publish a stream of records to one or more Kafka topics

B Consumers consume an input stream from one or more topics

https://kafka.apache.org

Partition 101 1‘;
0 o|1|2|3|4|5|6|7|8]|9 |
of1]z}
_ Producers
" i writes
pariion 1o 1y 1z |al4|s (6|7 6|8} Writes :
i
| 1)1
. o1]2(3]4[5[6(7 (8|9 o111
i
Partition 1] K
2 |0 BB 5 BT o |2t /reads\
- Consumer A Consumer B
Old New (offset=9) (offset=11)

Image extracted from https://kafka.apache.org

B A topic = stream of records = partitioned log = structured commit log
Records are assigned a sequential id. number called the offset

Each partition is an ordered, immutable sequence of records that is
continually appended to

B A partition must fit on the server that hosts it
B A topic may have many partitions, each one acting as the unit of parallelism

B Consumers can consume records in any order they like, but usually of the
time in ascending order

https://kafka.apache.org

I 6.3 Consumer groups

—— Kafka Cluster
Server 1 Server 2
[l i

LY LY LY N
C3 C4 C5 Cé6

Consumer Group A Consumer Group B——

Image extracted from https://kafka.apache.org

B Consumers join groups, which are labelled with a consumer group name

B Typically, applications are structured/programmed as follows:

B Each record published to a topic is delivered to one consumer within each

subscribing consumer group

If all the consumers are in the same group, then records are load balanced

If all the consumers are in different groups, then records are replicated

Distributed Event-Based System — AMQP, MQTT, and Kafka i
EHH

https://kafka.apache.org

_ 6.4 Fault tolerance

B Each partition is replicated across a configurable number of hosts

B One host acts as the “leader” and the others act as “followers”

® Usually, each host acts as a leader for some of its partitions and as a follower

for others

B The process of maintaining membership in the group is handled by Kafka
dynamically

® If an instance joins a group, it takes over partitions from existing instances

® If an instance dies, its partitions are distributed to the remaining instances

B Total order over records within a partition, not between different partitions
in a topic

_6.5 From Event Collaboration to CQRS

6.5.1 Design pattern “Event Collaboration”
6.5.2 Design pattern "Event Sourcing”
6.5.3 Design pattern “Command Query Responsability Segregation”

Distributed Event-Based System — AMQP, MQTT, and Kafka

I 6 5.1 Design pattern “Event Collaboration”
e e

\ KAFKA
[orar (\ N
G Vadated | \ { Orkr
N\ \ / / \
[Oeder NN N N / \ Completed |
| Resrsted / S~y Vd N 2 YN\ Y,
Paugrent Srprrent .
rocesze Prepored Soprrent |
g et eivered |
/ V4
4 | S

v |
([remeesa)|
* o
(o) [ooee)

Image from B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka", O'Reilly, 2018

W https://martinfovler.com/eaaDev/EventCollaboration.html
B Each (micro-)service listens events and creates new events
B No service knows the other services nor owns the entire workflow

® This is called a choregraphy

An orchestration, in which a process controls the whole workflow

@ e

https://martinfowler.com/eaaDev/EventCollaboration.html

N 6 5.2 Design pattern “Event Sourcing”

Kafka Strearms /
KsQl

2]

KAFKA

Serving
Loyer
(Cassandra efc)

OO
[RARAR!

/
High-throughput Data is emnbedded in -~ Clustered
messaging each engine Java app

B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka”, O'Reilly, 2018.

B https://martinfowler.com/eaaDev/EventSourcing.html

B Use Kafka as a data store of the events in the order of their creation
® Make the events “the source of truth”: include commands into Kafka log
B Fault-tolerance using passive replication by rollback recovery

¥ Consider (micro-)services that have a pseudo-deterministic execution

— Any state of the execution can be computed from an initial state and the
sequence of events that leads to this state

® Periodic creation of snapshots + replay of events in order

@ e

https://martinfowler.com/eaaDev/EventSourcing.html

N 6 5.3 Design pattern “Command Query Respon-
sability Segregation”

Order

Order Request ® Receted
Validate

@ Notify other
Order services

Valdated
ey 1
View

Events become the
Source of Truth
Image from B. Stopford, “Designing Event-Driven Systems: Concepts and Patterns for Streaming Services with Apache Kafka", O'Reilly, 2018

B https://martinfowler.com/eaaDev/EventSourcing.html

B Separate the write path from the read path and links them with an
asynchronous channel

B Provide adequate view(s) of the (micro-)service and query the view(s)

https://martinfowler.com/eaaDev/EventSourcing.html

_7 Conclusion |

B Distributed Event-Based Systems for acquiring data

B Other names of this architectural style: Distributed Publish Subscribe
System, Distributed Messaging Service

B Interaction mode = event-based

® Producers initiate the exchanges of data (push mode)

® Producers do not know the potential consumers when pushing

B Properties of this architectural style =

® Space decoupling: Producers and consumers do not know each others

® Time decoupling: Producers and consumers do not need to be active at the
same time

L]

Synchronisation decoupling: asynchronous communication
(producers and consumers are not blocked while producing or being notified,
respectively)

_7 Conclusion 11

B |n the order of the presentation

® AMQP and MQTT = server-based architecture using topic-based filtering

® AMQP proposes three types of exchanges:

“fan-out” = broadcast functionality

“direct” = string equality as a very simple matching algorithm

“topic” = topic-based filtering with meta-characters to match a single word
or more words

" MQTT comes in addition with QoS:

— 0/"at most once” = best effort
— 1/"at least once” = assured to arrive but duplicates can occur
2/"exactly once” = assured to arrive exactly once

® Kafka looks more like a distributed commit logging system

A topic is a set of partitions, which are append-only files

More stream-oriented than topic-based

_7 Conclusion Il

B Kafka for stream processing, data
integration, stable network and
good infrastructure

B AMQP for AMQP consortium, high O

throughput, high availability O

o

Processing units

o
@

B MQTT for ISO standard,

[ver]

lightweight, poor connectivity, high
latency, disconnections and

O
o ©

o O

Processing units

©O0o O

reconnections R

Cloud
Computing

Fog
Computing
/Cloudlets

Edge
Computing

	Motivations and objectives/requirements
	E.g. IoT platforms
	E.g. Web services with ``Event sourcing''
	E.g. Life-cycle of data-driven machine learning applications
	E.g. Autonomic computing—MAPE-K loop
	E.g. Control theory—SISO loop
	Requirements

	Definition of Event-Based Systems
	Models of interaction and EBS
	Constituents of an EBS
	Notification filtering mechanisms

	Which Topic-based filtering DEBS?
	1st tech.: Topic-based filtering w/ OASIS AMQP v.0.9.1
	Overview of topic-based filtering of AMQP
	Exchange, binding, and queue
	Message and queue properties

	2nd tech.: Topic-based filtering w/ OASIS MQTT, IoT requirements
	MQTT features
	Topic filters w. wildcards and topic names
	QoS—Message reliability
	Disconnections

	3rd tech.: Topic-based filtering w/ Apache Kafka, Event Sourcing
	Cluster-based architecture
	Topics as structured commit logs
	Consumer groups
	Fault tolerance
	From Event Collaboration to CQRS

	Conclusion

