
Distributed Event-Based
System — Addendum
Denis Conan

Septembre 2018

1 Formal specification of simple event-based sys-
tem

1. Formal specification of simple event-based system
1.1 Formal background — Temporal logic
1.2 Changes of the state caused by interface operations (w/o advertisements)
1.3 Trace-based specification of simple event-based system (w/o

advertisements)
1.4 Changes of the state caused by the adding advertisements
1.5 Safety specification of simple event system with advertisements
1.6 Liveness specification of simple event system with advertisements
2. Formal specification of distributed routing
3. Routing algorithm framework
4. Content-based data and filter models

2/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.1 Formal background — Temporal logic
■ Trace: a sequence of states: σ = s0, s1, s2, ...

• Subtrace: σ|i is the trace si , si+1, si+2, ...

■ Atomic predicate P is true for every trace whose first state satisfies P
■ Formula Ψ: P with quantifiers (∀, ∃) and logical operators (∨, ∧, =⇒ , ¬)
■ Temporal operators:
• 2 (“always”)

− 2Ψ is true for traces σ iff ∀i ≥ 0, Ψ is true for σ|i

− 2P means P always holds, i.e. for all subtraces
• 3 (“eventually”)

− 3Ψ is true for traces σ iff ∃i ≥ 0 : Ψ is true for σ|i

− 3P means P will hold eventually, i.e. there is a subtrace for which P holds
• # (“next”)

− #Ψ is true for traces σ iff Ψ is true for σ|1

− #P means P holds for the subtrace starting at the second place of the trace

3/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.1.1 Exercise

? 23P

? 32P

? 2[P =⇒ 2P]

? 2[P =⇒ 3Q]

? 2[P =⇒ #2¬P]

? P =⇒ 32Q

? 2¬P ∨ 2¬Q ≡ ¬(3P ∧ 3Q)

4/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.2 Changes of the state caused by interface op-
erations (w/o advertisements)

■ X : a component of a system (being a producer and/or a consumer)
■ C: the set of all the components
■ SX : a set of active subscriptions for component X
■ PX : a set of published notifications by component X
■ DX : a set of delivered notifications to component X
■ N : the set of all the notifications, N ⊆ N : a set of notifications
• n ∈ N(SX): X has a subscription that matches n ∈ N

sub(X , F) Component X subscribes to filter F S ′
X = SX ∪ {F}

unsub(X , F) Component X unsubscribes to filter F S ′
X = SX \ {F}

pub(X , n) Component X publishes n P ′
X = PX ∪ {n}

notify(X , n) Component X is notified about n D′
X = DX ∪ {n}

■ « ' » indicates the state of a variable after the execution of the interface
operation

5/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.2.1 Exercise

? 3notify(X , n)

? 2¬unsub(X , F)

? 2[notify(X , n) =⇒ #2¬notify(X , n)]

? 2[notify(X , n) =⇒ n ∈ N(SX)]

? 2[notify(Y , n) =⇒ n ∈ ∪X∈CPX]

6/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.3 Trace-based specification of simple event-
based system (w/o advertisements)

■ A component receives
(a) only notifications it is currently subscribed to
(b) only notifications that have previously been published
(c) a notification at most once
(d) all future notifications matching one of its active subscriptions

• Safety: demands that “something irremediably bad” will never happen

2
[
notify (Y , n) =⇒ [n ∈ N (SY)] (=a)

∧ [n ∈ ∪X∈CPX] (=b)

∧ [#2¬notify (Y , n)]
]

(=c)

• Liveness: requires that “something good” will eventually happen

2

[
2

(
F ∈ SY

)
=⇒ 32

[
pub (X , n) ∧ n ∈ N (F) =⇒ 3notify (Y , n)

]]
(=d)

7/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.4 Changes of the state caused by the adding
advertisements

■ AX : set of all active advertisements of component X

■ n ∈ N(AX): X has an advertisement that matches n ∈ N

adv(X , F) Component X advertises filter F A′
X = AX ∪ {F}

unadv(X , F) Component X unadvertises filter F A′
X = AX \ {F}

8/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.5 Safety specification of simple event system
with advertisements

(a) + (b) + (c) +

(e) If a notification is published that does not match any of the active
advertisements of the publishing component, the notification should not be
delivered to any component

2
[
[notify(Y , n) =⇒ #2¬notify(Y , n)] (=c)

∧ [notify(Y , n) =⇒ n ∈ ∪X∈CPX ∩ N(SY)] (=b,a)

∧ [pub(X , n) ∧ n /∈ N(AX) =⇒ 2¬notify(Y , n)]
]

(=e)

9/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

1.6 Liveness specification of simple event system
with advertisements

f1) If a client Y is always subscribed to F and a client X always advertises G

f2) then there exists a future time where a notification n published by X
matches F and G

f3) will lead to the delivery of n to Y .

2
[
[2(F ∈ SY) ∧ 2(G ∈ AX)] (=f1)

=⇒ [32(pub(X , n) ∧ n ∈ N(F) ∩ N(G) (=f2)

=⇒ 3notify(Y , n))]
]

(=f3)

10/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2 Formal specification of distributed routing

1. Formal specification of simple event-based system
2. Formal specification of distributed routing
2.1 Architecture of the distributed service
2.2 Distributed system model for notification routing
2.3 Notations for notification forwarding and delivery
2.4 Valid routing
2.5 Safety and liveness conditions of valid routing
2.6 Monotone valid routing algorithms
2.7 Safety and liveness conditions of monotone valid routing
3. Routing algorithm framework
4. Content-based data and filter models

11/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.1 Architecture of the distributed service
Border broker

Component

Inner broker

Local broker

X1

B2

B1

B3
B4

X3

X2

■ The notification service forms an overlay network in the underlying system
■ The overlay consists of event brokers that run as processes on nodes
• Local brokers put the first message into the network
• Border and inner brokers forward the message to neighbouring brokers

according to filter-based routing tables and routing strategies
• Messages are sent to local brokers
• Local brokers deliver the message to the application components

12/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.2 Distributed system model for notification
routing

■ Each node runs one or more processes
■ Processes interact by passing messages via links between them
■ A link connects a pair of processes and transmits messages asynchronously
■ A FIFO ordering of messages is applied
■ Acyclic connected topologies

■ The topology of the overlay network of brokers is static
■ Clients are stationary
■ Communication channels are reliable and respect FIFO message ordering
■ Message delay is unknown but finite, and system is not overloaded and

fault-free
■ System without advertisements

13/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.3 Notations for notification forwarding and de-
livery

1. pub(n)

(F1, X2)

FB1(n) = {X2, B2}

B2

B3

B1

X2

X1

2. forward(n)

(F2, B2)

(F3, B3)

n in N(F1)

n in N(F2)

n not in N(F3)

Routing table of B1

2. notify(n)

■ T |D
B : set of filters of the routing table of broker B regarding single

destination D
T |D

B = {F |∃(F , D) ∈ TB}

■ T \D
B : set of filters regarding all but single destination D

T \D
B = {F |∃(F , E) ∈ TB ∧ E ̸= D}

■ N(T |D
B): set of notifications that match T |D

B

■ NB : set of neighbouring brokers
■ LB : set of local consumers
■ FB(n): destinations to which a broker B forwards or delivers a notification n

FB(n) = {D|D ∈ NB ∪ LB ∧ n ∈ N(T |D
B)}

14/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.4 Valid routing

■ Valid routing algorithm = adapts the routing configuration by preserving the
safety and liveness properties of the DEBS

■ Additional notations:
• θ(Y): identity of the broker that manages consumer Y
• Simple directed path connecting a broker with θ(Y)—i.e., the access broker

− B1, ..., Bj simple path in the network of brokers
− γ(B1, ..., Bj): set of notifications such that if a notification is published at

Bj and stays in this set, it reaches B1 over this path
• γ(B1, ..., Bj) =

⋂
1<k≤j N(T |Bk−1

Bk
)

15/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.5 Safety and liveness conditions of valid routing

■ To guarantee safety, the local routing configuration ensures that only
matching notifications are delivered

• Local subset validity

2
[
N(T |Y

θ(Y)) ⊆ N(SY)
]

(=r1)

■ To guarantee liveness, when a consumer Y subscribes to a filter F and stays
subscribed, then from some time, every notification that is published at any
broker B and that matches F should be delivered to Y

• Eventual super-set validity

2
[
2(F ∈ SY) =⇒ 32

[
N(T |Y

θ(Y)) ⊇ N(F)
]]

(=r2: From θ(Y) to Y)

2
[
2(F ∈ SY) ∧ B ̸= θ(Y) ∧ n ∈ N(F)

=⇒ 32
[
n ∈ γ(θ(Y), ..., B)

]]
(=r3: From B to θ(Y))

16/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.6 Monotone valid routing algorithms

■ Drawbacks of valid routing
• Local subset validity does not require immediate delivery
• Eventual super-set validity is a property of the routing configuration of the

entire topology

■ Improvements
• Immediate delivery

− Local consumer subscription followed by local publisher publication
should imply local notification of the consumer

• Set of notifications forwarded is monotonically increasing for any path
− Notifications sent over Bi+1 → Bi are sent over Bi+2 → Bi+1

+ Only depends on the routing configurations of neighbouring brokers

17/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

2.7 Safety and liveness conditions of monotone
valid routing

■ Reminder:
• T |DB = {F |∃(F , D) ∈ TB}

• T \DB = {F |∃(F , E) ∈ TB ∧ E ̸= D}

■ Local validity ≡ immediate delivery

2
[
N(T |Y

θ(Y)) = N(SY)
]

(= merging of r1 and r2 + strengthness)

■ Eventual monotone remote validity1

2
[
2

[
n ∈ N(T \Bj

Bi
)
]

=⇒ 32
[
n ∈ N(T |Bi

Bj
)
]]

1. If n is forwarded to Bk ̸= Bj ∈ NBi then n comes from Bj .
18/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3 Routing algorithm framework

1. Formal specification of simple event-based system
2. Formal specification of distributed routing
3. Routing algorithm framework
3.1 Generic algorithm
3.2 Flooding
3.3 Simple routing
3.4 Identity-based routing
4. Content-based data and filter models

19/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1 Generic algorithm

3.1.1 Main program
3.1.2 handleMessage procedure
3.1.3 handleNotification procedure
3.1.4 Preliminary words about the generic administer procedure
3.1.5 handleAdminMessage procedure
3.1.6 pub, sub and unsub procedures

20/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.1 Main program

■ The main program starts when the broker is created:
1. Initialise the routing table TB of the broker B
2. Initialise a delivery queue QC for each local consumer C
3. Enter an infinite loop that dispatches messages arriving from neighbouring

brokers to the handleMessage procedure

1 Program ContentBasedRouting()
2 initialise TB
3 initialise QC for all C ∈ LB
4 loop
5 wait until a message is available
6 m← next selected message
7 handleMessage(m)

B1

(F1, X2)

(F2, X3)

(F3, B2)

(F4, B3)

B2

B3

X2

X1

X3

Routing table of B1

21/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.2 handleMessage procedure

■ handleMessage dispatches a message based on message type
• Two types of messages are exchanged among neighbouring brokers

1. forward(n): to disseminate a notification n in the network of brokers
2. admin(S, U): to propagate routing table updates

• S: set of subscriptions
• U: set of unsubscriptions

3. administer(S, U): to compute the admin messages to send
• MS : set of pairs (filtersub, destination) for sending admin messages
• MS : set of pairs (filterunsub, destination) for sending admin

messages

1 procedure handlemessage(Message m)
2 if m is forward(n) from neighbour u then
3 handleNotification(u, n)
4 if m is admin(S, U) from neigh. u then
5 (MS , MU)← administer(u, S, U)
6 handleAdminMessage(u, MS , MU)

B1

X2

X1

X3

B2

B3

forward (n)

admin (S, U)

22/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.3 handleNotification procedure

■ handleNotification sends forward messages to neighbouring brokers
■ handleNotification notifies local consumers
• notify is called by the broker to notify a local consumer about a notification
• The notification is appended to the delivery queue QY of the consumer Y

1 procedure
handleNotification(Neighbour D,
Notification n)

2 send “forward(n)” to all the
neighbours ∈ FB(n) \ {D}

3 forall local consumers C ∈ FB(n) do
4 notify(C , n)
5 procedure notify(Consumer Y ,

Notification n)
6 QY ← append(QY , n)

B1

X2

X1

X3

B2

B3

1. forward (n)

2. notify (n)

2. forward (n)

2. notify (n)

23/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.4 Preliminary words about the generic
administer procedure

■ The code of administer is implemented by framework instantiations to
realise a concrete routing algorithm

• Flooding
• Simple
• Identity-based
• Covering-based
• Perfect merging
• Imperfect merging

■ administer returns two sets that are pairs: (filtersub, destination) or
(filterunsub, destination)

• Send an admin message to destination for filtersub

− Sending done in handleAdminMessage, as explained in next slide

24/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.5 handleAdminMessage procedure

■ The values returned by administer are used as input to
handleAdminMessage

• handleAdminMessage sends admin messages to neighbouring brokers

1 procedure handleAdminMessage(Dest
D, Set MS , Set MU)

2 forall Bi ∈ NB\{D}
3 S′ ← {F |(F , Bi) ∈ MS}
4 U ′ ← {F |(F , Bi) ∈ MU}
5 if S′ ̸= ∅ ∨ U ′ ̸= ∅ then
6 send “admin(S′, U ′)” to Bi

B1

X2

X1

B2

B3X3

1. admin (S, U)

2. admin (S’, U’)

25/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.1.6 pub, sub and unsub procedures

■ pub is called by a local publisher to publish a notification

■ sub is called by a local consumer to subscribe to a filter

■ unsub is called by a local consumer to unsubscribe to a filter

1 procedure pub (Publisher X ,
Notification n)

2 handleNotification(X , n)
3 procedure sub (Consumer Y , Filter

F)
4 (MS , MU)← administer(Y , {F}, ∅)
5 handleAdminMessage(Y , MS , MU)
6 procedure unsub (Consumer Y , Filter

F)
7 (MS , MU)← administer(Y , ∅, {F})
8 handleAdminMessage(Y , MS , MU)

B1

X2

X1

X3

B2

B3

sub (F1)

pub (n)

unsub (F2)

26/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.2 Flooding

■ Idea: a broker forwards a notification to all its neighbours
• Each broker is initialised to the set {(FT , U)|U ∈ NB}

with ∀n ∈ N, FT (n) = true

■ Each broker updates its routing table (RT) regarding its local consumers
• If a consumer Y subscribes to a filter F , the broker adds (F , Y) to its RT
• If a consumer Y unsubscribes to a filter F , the broker deletes (F , Y) from its

RT

■ Flooding does not require the remote routing configuration to be updated

1 procedure administer(Dest s, Set S, Set U)
2 TB ← TB ∪ {(F , s)|F ∈ S}
3 TB ← TB \ {(F , s)|F ∈ U}
4 return (∅, ∅);

27/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.3 Simple routing

■ Idea: use filter forwarding to update the routing configuration in reaction to
subscribing and unsubscribing consumers

• Initially, ∀B, TB = ∅

1 procedure administer(Dest D, Set S,
Set U)

2 TB ← TB ∪ {(F , D)|F ∈ S}
3 TB ← TB \ {(F , D)|F ∈ U}
4 MS ← {(F , H)|H ∈ NB\ {D} ∧ F ∈

S};
5 MU ← {(F , H)|H ∈ NB\ {D} ∧ F ∈

U};
6 return (MS , MU);

B1X1

1. sub(F)

B2

B3

...

(F, X1)
2.

Routing table of B1

...

(F, B1)

...

(F, B1)

4.

4.

3. admin({F},{})

3. admin({F},{})

28/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4 Identity-based routing

■ Reminder:
• T |DB = {F |∃(F , D) ∈ TB}
• T \DB = {F |∃(F , E) ∈ TB ∧ E ̸= D}

■ Idea: a subscription (unsubscription) is only forwarded to a neighbour H if
there is no identical subscription in the RT for a destination distinct from H

■ The superscript stands for Identical
■ C I

B(F , D): set of routing entries in TB of which the filter is identical to the
filter F and of which the destination equals the destination D

• C I
B(F , D) = {(G , D)|(G , D) ∈ TB ∧ F ≡ G}

■ DI
B(F): set of neighbours H for which there is no routing entry (G , D) in

TB , where G is identical to F and D is distinct from H

• DI
B(F) = {H ∈ NB |∄G ∈ T \HB : F ≡ G}

29/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4.1 Algorithm

■ If a broker B receives a(n) (un)subscription from a neighbour or a consumer
D:

• B updates its RT (lines 4-6):
− If D is a neighbour, B removes C I

B(F , D) (line 5)
− If D is a local consumer, B removes solely (F , D) (line 6)

• B forwards F to all neighbours that are in DI
B(F) except D (lines 7–10 and 13)

• If F is a subscription, B inserts a routing entry (F , D) into its RT (line 11)

1 procedure administer(Dest D, Set S,
Set U)

2 MS ← ∅;
3 MU ← ∅;
4 forall F ∈ S ∪ U do
5 if D ∈ NB then

TB ← TB \ C I
B(F , D);

6 else TB ← TB \ (F , D);

7 A← {(F , H)|H ∈ DI
B(F)\{D}};

8 if F ∈ U then MU ← MU ∪ A;
9 else
10 MS ← MS ∪ A;
11 TB ← TB ∪ {(F , D)};
12 endif
13 return (MS , MU);

30/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4.2 An example (1/3)

S

B2

B1

B3

B4

B5

B6

31/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4.3 An example (2/3)

S

B2

B1

B3

B4

B5

B6

1. sub(F)

3.
(F, S)

2. admin({F},{})

2. admin({F},{})
2. admin({F},{})

4. admin({F},{})

4. admin({F},{})

(F, B1)

(F, B1)

(F, B1)

(F, B4)

(F, B4)

32/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4.4 An example (3/3)

S

B2

B1

B3

B4

B5

B6

S2

1. sub(F’)

(F’, S2)

2. admin({F’}, {})

(F, S)

(F’, B4)

(F, B1)

(F, B1)

F’ identical to F

(F, B4)

(F, B4)

(F, B1)

3.b.

3.a

33/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

3.4.5 Exercise

S2

S3

B5

F3 not identical to F

S

(F, S)

(F’, B4)

B1

B2

B3

B4

B6

1. sub(F3)

F3 not identical to F’

1. sub(F4)

S4

F4 identical to F3

(F, B4)

(F, B1)

(F’, S2) (F, B4)

(F’, B1)

(F’, B1)

? Execute the algorithm for the new subscription F3 of S3 and then the new
subscription F4 of S4

34/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4 Content-based data and filter models

1. Formal specification of simple event-based system
2. Formal specification of distributed routing
3. Routing algorithm framework
4. Content-based data and filter models
4.1 Data model and Filter model
4.2 Tuples
4.3 Structured records
4.4 Semi-structured records
4.5 Objects

35/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.1 Data model and Filter model

■ Data model: how the content of notifications is structured
■ Filter model: how subscriptions can be specified
• How notifications can be selected by applying filters that evaluate predicates

over the content of notifications

36/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.2 Tuples

■ Data model:
• A notification is a tuple: an ordered set of attributes

■ Filter model:
• A subscription is defined as a template
• The attributes of notifications and templates are matched to each other

according to their position

■ Example: the notification (StockQuote,“Foo Inc”, 45) is matched by the
subscription template (StockQuote,“Foo Inc”, *)

− Tuples with templates provide a simple model that is not flexible
• Because attributes cannot be optional

37/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3 Structured records

4.3.1 Data model
4.3.2 Filter model
4.3.3 Identity, overlapping, covering of attribute filters
4.3.4 Routing optimisations with identity
4.3.5 Routing optimisations with covering
4.3.6 Covering with types and comparison
4.3.7 Covering with intervals and strings
4.3.8 Covering with sets
4.3.9 Routing optimisations with overlapping
4.3.10 Routing optimisations with merging

38/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.1 Data model

■ A notification n is a nonempty set of attributes {a1, ..., an}

■ ai is a (name,value) pair: (ni , vi)

■ Attribute names are unique: i ̸= j ⇒ ni ̸= nj

■ Example of notification: {(type, StockQuote),(name,“Infineon”),(price,
45.0)}

■ More powerful than tuples since attributes can be optional in subscriptions
and notifications

39/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.2 Filter model
■ Attribute filter: triple Ai = (ni , Opi , Ci)

with ni = attribute name, Opi = test operator, Ci = value for the test
■ LA(Ai) = set of values vi that cause an attribute filter to match attribute ni

• LA(Ai) = {vi |Opi (vi , Ci) = true}
• Usually LA(Ai) ̸= ∅

■ Filter F = boolean function applied to a notification n: F (n) → {true, false}
■ The set of matching notifications N(F) = {n|F (n) = true} ⊆ N
■ Simple filter = filter consisting of a single atomic predicate
■ Compound filter = conjunction of simple filters: F = A1 ∧ ... ∧ An

• E.g., (type = StockQuote) ∧ (name = “Foo Inc”) ∧ (price /∈ [30, 40])

■ A notification n matches a filter F iff it satisfies all the attributes filters of F

+ Attributes can be optional in the notification
+ New attributes can be added without affecting existing filters

40/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.3 Identity, overlapping, covering of attribute
filters

■ Identity:
• A1 ≡ A2 iff n1 = n2 ∧ LA(A1) = LA(A2)
• E.g., (price ∈ {20, 21, 22, 23, 24, 25}) is identical to (price ∈ [20, 25])

■ Overlapping:
• A1 ⊓ A2 iff n1 = n2 ∧ LA(A1) ∩ LA(A2) ̸= ∅
• E.g., (price > 25) overlaps (price ∈ [20, 30])

■ Covering:
• A1 ⊒ A2 iff n1 = n2 ∧ LA(A1) ⊇ LA(A2)
• E.g., A1 = (price > 10) covers A2 = (price ∈ [20, 30])

■ Disjoint
• A1 ̸⊓ A2 iff n1 = n2 ∧ LA(A1) ∩ LA(A2) = ∅
• {price < 10} and {price > 20} are disjoint

41/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.4 Routing optimisations with identity

■ An identity test among filters is necessary to implement identity-based
routing
to avoid redundant routing entries and unnecessary forwarding of
(un)subscriptions

■ Given two filters F1 = A1
1 ∧ ... ∧ A1

n and F2 = A2
1 ∧ ... ∧ A2

m that are
conjunctions of attribute filters with at most one attribute filter per
attribute,
F1 ≡ F2 iff
they contain the same number of attributes filters ∧ (∀i , ∃j : A1

i ≡ A2
j)

■ E.g., F1 = {x = 4} ∧ {y > 5} not identical to
F2 = {x = 4} ∧ {y > 5} ∧ {z ∈ [3, 5]}

42/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.5 Routing optimisations with covering

■ A covering test among filters is necessary to implement covering-based
routing
to avoid redundant routing entries and unnecessary forwarding of
(un)subscriptions
∧ to get rid of the obsolete2 routing entries.

■ Given Two filters F1 = A1
1 ∧ ... ∧ A1

n and F2 = A2
1 ∧ ... ∧ A2

m that are
conjunctions of attribute filters with at most one attribute filter per
attribute,
F1 ⊒ F2 iff ∀i , ∃j : A1

i ⊒ A2
j

■ E.g., F1 = {x = 4} ∧ {y > 5} covers F2 = {x = 4} ∧ {y > 5} ∧ {z ∈ [3, 5]}

■ E.g., F3 = {x ≥ 2} ∧ {y > 5} covers F4 = {x = 4} ∧ {y = 7} ∧ {z ∈ [3, 5]}

2. A routing entry covers another routing entry, which becomes obsolete
43/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.6 Covering with types and comparison

■ n1 = n2

■ Covering among notification types
• A notification n is an instance of Type T : n instanceof T

A1 A2 A1 ⊒ A2 iff
n instanceof T1 n instanceof T2 T1 = T2 ∨ T1 supertypeof T2

■ Covering among comparison constraints on simple values

A1 A2 A1 ⊒ A2 iff
x ̸= c1 x < c2 c1 ≥ c2
x > c1 x > c2 c1 ≤ c2

• E.g., A1 = (x ̸= 15) and A2 = (x < 10) =⇒ A1 ⊒ A2

• E.g., A1 = (x > 10) and A2 = (x > 20) =⇒ A1 ⊒ A2

44/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.7 Covering with intervals and strings

■ n1 = n2

■ Covering among interval constraints on simple values

A1 A2 A1 ⊒ A2 iff
x ∈ I1 x ∈ I2 I1 ⊇ I2
x /∈ I1 x /∈ I2 I1 ⊆ I2

• E.g. A1 = (x ∈ [3, 10]) and A2 = (x ∈ [4, 6]) =⇒ A1 ⊒ A2

■ Covering among constraints on strings

A1 A2 A1 ⊒ A2 iff
s hasPrefix S1 s hasPrefix S2 S2 hasPrefix S1
s hasPostfix S1 s hasPostfix S2 S2 hasPostfix S1

s hasSubstring S1 s hasSubstring S2 S2 hasSubstring S1

• E.g. A1 = (s hasPrefix “abc”) and A2 = (s hasPrefix “abcd”) =⇒ A1 ⊒ A2

45/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.8 Covering with sets

■ n1 = n2

■ Covering among set constraints on simple values

A1 A2 A1 ⊒ A2 iff
x ∈ M1 x ∈ M2 M1 ⊇ M2
x /∈ M1 x /∈ M2 M1 ⊆ M2

■ Covering among set constraints on multi values

A1 A2 A1 ⊒ A2 iff
X subset M1 X subset M2 M1 superset M2
X contains a1 X superset M2 a1 ∈ M2
X superset M1 X superset M2 M1 subset M2

X notContains a1 X disjunct M2 a1 ∈ M2
X disjunct M1 X disjunct M2 M1 subset M2
X overlaps M1 X overlaps M2 M1 superset M2

46/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.9 Routing optimisations with overlapping

■ An overlapping test among filters is necessary
to use advertisements in subscription-based routing optimisations

■ Advertisement and subscription routing tables are used to route
(un)subscriptions from consumers to producers

• A subscription can be served by an advertisement if both overlap

■ Given two filters F1 = A1
1 ∧ ... ∧ A1

n and F2 = A2
1 ∧ ... ∧ A2

m that are
conjunctions of attribute filters with at most one attribute filter per
attribute,

• F1 and F2 are disjoint iff ∃i , j : (n1
i = n2

j) ∧ (LA(A1
i) ∩ LA(A2

j) = ∅)
− E.g., F1 = {x ≥ 2} ∧ {y > 5} and F2 = {x < 1} ∧ {y < 7} are disjoint

because {x ≥ 2} and {x < 1} are disjoint
• F1 and F2 overlap iff ̸ ∃i , j : (n1

i = n2
j) ∧ (LA(A1

i) ∩ LA(A2
j) = ∅)

− E.g., F1 = {x ≥ 2} ∧ {y > 5} and F2 = {x < 5} ∧ {y < 7}
because {x ≥ 2} overlaps {x < 5} and {y > 5} overlaps {y < 7}

47/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.3.10 Routing optimisations with merging

■ Merging of conjunctive filters
• A merging test among filters is necessary to implement merging-based routing

to reduce the number of subscriptions and advertisements stored by brokers
• Examples:

− F1 = {x = 5} ∧ {y ∈ {2, 3}} and F2 = {x = 5} ∧ {y ∈ {4, 5}} can be
merged to F = {x = 5} ∧ {y ∈ {2, 3, 4, 5}}

− F1 = {y = 3} ∧ {x = 5} and F2 = {y = 3} ∧ {x ̸= 5} can be merged to
F = {y = 3}

• Example of perfect merging rules for attribute filters

A1 A2 Condition A1 ∪ A2
x ∈ M1 x ∈ M2 - x ∈ M1 ∪ M2
x /∈ M1 x /∈ M2 M1 ∩ M2 = ∅ ∃x (i.e., no att. filter)

M1 ∩ M2 ̸= ∅ x /∈ M1 ∩ M2
X overlaps M1 X overlaps M2 - X overlaps M1 ∪ M2
X disjunct M1 X disjunct M2 M1 ∩ M2 = ∅ ∃X (i.e., no att. filter)

48/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4 Semi-structured records

4.4.1 Data model
4.4.2 Filter model

49/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4.1 Data model

■ Notification = XML document = set of elements arranged in a tree
• Element = set of attributes + subordinate child elements

− Attributes = pairs (name, value)
− Sibling attributes can have same name =⇒ names address sets of attr.

1 <notification>
2 <auction endtime=”05/18/02 22:17:42”

minprice=”50”>
3 <seller name=”Smith” id=”1234”/>
4 <item>
5 <board ... />
6 </item>
7 <item>
8 <cpu manufacturer=”AMD”

type=”Athlon” clock=”800”/>
9 </item>
10 </auction>
11 </notification>

notification

auction

itemseller item

board cpu

50/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4.2 Filter model I
■ A filter model uses a path expression (e.g., XPath)
• Select a set of attributes and Impose constraints on the selected attributes

■ A filter is a conjunction of path filters: F = ∧iPi

■ A path filter P = (S, C) consists of an element selector S and an element
filter C

■ An element selector selects a subset of the elements of a notification
• An absolute path: e.g. /notification/auction/item/cpu
• An abbreviated path: e.g. //cpu

■ An element filter is a conjunction of a nonempty set of attribute filters:
C = ∧iAi

• e.g. [@manufacturer = “AMD” ∧ @clock ≥ 700]

■ Example of path filter:
/notification/auction/item/cpu[@manufacturer = “AMD” ∧ @clock ≥ 700]

51/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4.2 Filter model II

■ LA(A): set of all values that cause an attribute filter A to match an attribute
■ A1 = (n1, Q1) covers A2 = (n2, Q2),

A1 ⊒ A2 iff n1 = n2 ∧ LA(A1) ⊇ LA(A2)
• Example: [@clock ≥ 600] covers [@clock ≥ 700]

■ LE (C): set of all elements that match an element filter C

■ C1 covers C2, C1 ⊒ C2 iff LE (C1) ⊇ LE (C2)
• Example: [@clock ≥ 600] covers [@manufacture = “AMD” ∧ @clock ≥ 700]

■ C1 is disjoint with C2 if there exists no attribute that is constrained in both
element filters

• Example: [@minprice ¡ 100] is disjoint with [@name = “Pu”]

■ LS(S): set of all elements that are selected by an element selector S

■ S1 covers S2, S1 ⊒ S2 iff LS(S1) ⊇ LS(S2)

52/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4.2 Filter model III

■ S1 is disjoint with S2 iff LS(S1) ∩ LS(S2) = ∅

■ An absolute path covers another absolute path iff both are identical
■ An abbreviated path covers another (abbreviated/absolute) path iff the

former is a suffix of the later
• Example: //cpu covers //item/cpu because //cpu selects all elements named

cpu, //item/cpu only selects those elements named cpu which are a
sub-element of an element item

■ LP(P): set of all elements that match a path filter P

■ P1 = (S1, C1) covers P2 = (S2, C2), P1 ⊒ P2 iff LP(P1) ⊇ LP(P2)
• Example: //cpu[@manufacturer = “AMD”] covers

//cpu[@manufacturer = “AMD” ∧ @clock ≥ 700]

■ P1 is disjoint with P2 iff S1 is disjoint with S2 or C1 is disjoint with C2

53/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.4.2 Filter model IV

■ Lemma: Given two path filters P1 = (S1, C1) and P2 = (S2, C2):
P1 ⊒ P2 iff S1 ⊒ S2 ∧ C1 ⊒ C2
A filter F1 covers F2, F1 ⊒ F2 iff N(F1) ⊇ N(F2)

■ Lemma: Given two filters F1 = P1
1 ∧ ... ∧ P1

n and F2 = P2
1 ∧ ... ∧ P2

m:
F1 ⊒ F2 iff ∀i∃j such that P1

i ⊒ P2
j

• Example: the filter {//cpu[@type = “Athlon”]} covers
{//seller[@name = “Pu”] ∧ //cpu[@type = “Athlon” ∧ @clock ≥ 600]}

54/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

4.5 Objects

■ Model notifications and filters as objects
■ Calling methods on attribute objects
• Methods can be invoked on the objects embedded in the notification
• The return value of the method can be a boolean value that is interpreted as a

result of the attribute filter or a value that is used to evaluate the constraint
− Example: An instance of a class StockQuote has been embedded in a

notification
• The object possesses an attribute with the name quote
• A = (quote.id() = “IBM”)
• A covers

(quote.isRealTime()) ∧ (quote.id() = “IBM”)
∧(quote.price() > 45.0))

55/55 09/2018 Denis Conan Distributed Event-Based System — Addendum

	Formal specification of simple event-based system
	Formal background — Temporal logic
	Changes of the state caused by interface operations (w/o advertisements)
	Trace-based specification of simple event-based system (w/o advertisements)
	Changes of the state caused by the adding advertisements
	Safety specification of simple event system with advertisements
	Liveness specification of simple event system with advertisements

	Formal specification of distributed routing
	Architecture of the distributed service
	Distributed system model for notification routing
	Notations for notification forwarding and delivery
	Valid routing
	Safety and liveness conditions of valid routing
	Monotone valid routing algorithms
	Safety and liveness conditions of monotone valid routing

	Routing algorithm framework
	Generic algorithm
	Flooding
	Simple routing
	Identity-based routing

	Content-based data and filter models
	Data model and Filter model
	Tuples
	Structured records
	Semi-structured records
	Objects

