
Component Middleware
S. Chabridon

September 2024



Foreword

WebServices/JavaRMI

Synchronous Call

TCP/UDP

sockets

BPELSCA

Activity Orchestrations

Application servers

− Life cycle (instantiate)

− Persistency

Structural Compositions

JavaEE

RabbitMQ

Publish/Subscribe 

2/73 09/2024 S. Chabridon Component Middleware



Outline

1. Introduction
2. Overview of EJB Technology
3. References

3/73 09/2024 S. Chabridon Component Middleware



1 Introduction

1. Introduction
1.1 Limits of object-oriented programming
1.2 Motivations for Component Based Development
1.3 What is a component ?
1.4 Runtime environment of a component
1.5 Multi-tier Architecture
1.6 Technologies for component middleware
2. Overview of EJB Technology
3. References

4/73 09/2024 S. Chabridon Component Middleware



1.1 Limits of object-oriented programming

■ A lot of tasks must be done manually
• Object instantiation
• Service invocation via direct access to object reference + explicit method call
• Definition of dependencies between classes
• Almost no tool for application deployment (installation of executable files on

the various sites)

■ Applications structure difficult to understand (= set of files)
■ Difficult to modify or extend an existing application
• communication mode
• modification of system/technical services
• assembly

■ Building an application using black-box classes makes it difficult
• to introduce new references to other objects
• to inherit from other classes

5/73 09/2024 S. Chabridon Component Middleware



1.2 Motivations for Component Based Develop-
ment

Programming in the large versus programming in the small

■ Applications are built by assembling existing components

■ Notion of connector: Components are connected with one another defining
a software architecture

■ Formalism to describe interactions between components

■ Formalism to describe the deployment of components

■ Separation of concerns: Separate functional from non-functional or
extra-functional aspects to allow for more reusability

■ Focus on application concerns (functional) rather than technical problems
(extra-functional)

6/73 09/2024 S. Chabridon Component Middleware



1.3 What is a component ?

No consensus on a unique definition. Each platform has its own definition !

■ According to [1]:

• A unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

• Context dependencies: required interfaces and execution environments
(platforms)

• A binary unit - not source code!
− This means that a class library is not a component

• No persistent state - a component is not an instance of itself
− Much like classes are not objects

7/73 09/2024 S. Chabridon Component Middleware



1.3.1 Characterization of a component

A software module

■ That is a contractual specification by exporting some attributes, properties
and methods

■ That provides interfaces to other components and requires some interfaces
from other components

■ That has no persistent state

■ That has pre- and post-conditions

■ That is configurable by setting properties

■ That is independently deployable and composable

8/73 09/2024 S. Chabridon Component Middleware



1.4 Runtime environment of a component I

Client

Application Server

Component

Container

S
er

v
ic

e

S
er

v
ic

e

Application Server

Container

Component

Component

S
er

v
ic

e

S
er

v
ic

e

S
er

v
ic

e

Connections

System / Middleware

9/73 09/2024 S. Chabridon Component Middleware



1.4 Runtime environment of a component II
■ Container

• Encapsulates components
• Provides system/technical services
• Maintains connections between components
• Deals with invocations and events

■ Application server

• Runtime environment for containers
• mediator between the containers and the system/middleware

10/73 09/2024 S. Chabridon Component Middleware



1.4.1 Technical services

■ Resource Management

• Ressource pooling
• Activation/deactivation mechanism

■ Naming and directory

■ Synchronous/asynchronous communication

■ Transaction

■ Persistence

■ Security

11/73 09/2024 S. Chabridon Component Middleware



1.5 Multi-tier Architecture

12/73 09/2024 S. Chabridon Component Middleware



1.5.1 The 6 roles in component development I

1. Component Provider

■ Develops components

■ Provides component metadata: structural information (component logical
name, transaction demarcation, persistence requirements...) and component
external dependencies

■ Metadata may be expressed in annotations or in an XML deployment
descriptor

2. Application Assembler

■ Assembles application components into a single deployable unit

■ Defines security roles for application clients, method permissions...

13/73 09/2024 S. Chabridon Component Middleware



1.5.1 The 6 roles in component development II
3. Deployer

■ Uses information provided by the component provider and the assembler

■ Resolves component dependencies

■ Deploys the application in an operational environment including a container
and a server

4. Server Provider

■ Responsible of distributed transaction management, distributed objets
management, low-level system tasks

■ OS vendor, Middleware vendor or DBMS vendor

14/73 09/2024 S. Chabridon Component Middleware



1.5.1 The 6 roles in component development III
5. Container Provider

■ Provides deployment tools and runtime support for components

■ Focus on the development of a scalable, secure, transaction-enabled
container

6. System Administrator

■ Responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure

■ Oversees the well-being of the deployed applications

■ Monitors the log of non-application exceptions and errors logged by the
container

■ Takes actions to correct the problems caused by exceptions and errors

15/73 09/2024 S. Chabridon Component Middleware



1.6 Technologies for component middleware I

■ Entreprise Java Beans

• Supported by Eclipse Foundation, as part of Eclipse Enterprise for Java (EE4J)
initiative https://projects.eclipse.org/projects/ee4j

• Initially developed by Sun Microsystems in 2005, then sponsored by Oracle
until 2019

• Application server: Jakarta EE 9
https://jakarta.ee/specifications/platform/9.1/

• ONE LANGUAGE, MANY PLATFORMS

■ .NET

• Supported by Microsoft https://docs.microsoft.com/en-us/dotnet/

• MANY LANGUAGES (C#, F#, or Visual Basic), MANY PLATFORMS
(Initially only on Windows)

16/73 09/2024 S. Chabridon Component Middleware

https://projects.eclipse.org/projects/ee4j
https://jakarta.ee/specifications/platform/9.1/
https://docs.microsoft.com/en-us/dotnet/


1.6 Technologies for component middleware II
■ Spring Framework

• Supported by Spring https://spring.io/projects/spring-framework

• Relies on dependency injection and aspects
• Lightweight application server enriched with a wide ecosystem

■ CORBA Component Model (CCM)

• Supported by the Object Management Group (OMG) www.omg.org
• EJB specification can be seen as a subset of CCM specification
• MANY LANGUAGES, MANY PLATFORMS

17/73 09/2024 S. Chabridon Component Middleware

https://spring.io/projects/spring-framework


2 Overview of EJB Technology

1. Introduction
2. Overview of EJB Technology
2.1 What is EJB ?
2.2 EJB Container
2.3 Java EE at a glance
2.4 Java EE Architecture
2.5 EJB types
2.6 Session Beans
2.7 Entity Beans
2.8 Transaction Service
2.9 Message-driven Beans (MDB)
3. References

18/73 09/2024 S. Chabridon Component Middleware



2.1 What is EJB ?

■ Enterprise Java Beans

■ Java component model for distributed enterprise applications, released by
Sun in 1998

■ EJB 3.0 specification (2006) - JSR 220

■ EJB 3.1 specification (2009) - JSR 318

■ EJB 3.2 specification (2013) - JSR 345

■ Definitions [2, 3]:

• EJB are standard server-side components for component transaction monitors
(CTM)

• EJB technology defines a model for the development of reusable Java server
components that encapsulate the business logic of an application

19/73 09/2024 S. Chabridon Component Middleware



2.1.1 The Java Community Process (JCP)

■ www.jcp.org

■ International developer community whose charter is to develop and evolve
Java technology

• specifications,
• reference implementations,
• and technology compatibility kits.

■ Company, organization, or individual can be member

20/73 09/2024 S. Chabridon Component Middleware



2.2 EJB Container

■ Runtime environment for creation and lifecycle management of bean
instances

■ Gives access to a set of standardized services to beans

■ Provides a context with:

• Configuration properties
• References to other components
• References to technical services

21/73 09/2024 S. Chabridon Component Middleware



2.2.1 EJB Container — Provided services I

■ Includes many Java technologies, that can be used independently of EJB

■ Java 2 Platform, Standard Edition (J2SE) APIs

• RMI-IIOP - remote method invocation based on CORBA Interoperable
Inter-ORB Protocol

• JDBC (Java DataBase Connectivity)
• JSP (Java Server Pages) — Web clients
• JAXP (Java API for XML Processing)
• Java IDL — adds CORBA capability to the Java platform

22/73 09/2024 S. Chabridon Component Middleware



2.2.1 EJB Container — Provided services II
■ Current services are frozen

■ Research initiatives (s.a. Objectweb JOnAS) provide extensible containers
with pluggable services

■ EJB APIs (javax package, now jakarta package in Eclipse implementation),
including Java Persistence (JPA)

■ Asynchronous communication: Java Messaging Service (JMS), JavaMail

■ Connector

■ Transaction: UserTransaction interface of JTA, Java Transaction Service
(JTS) (specification based on CORBA Object Transaction Service)

■ Security: Java Security API

■ Web Services: JAX-RPC, JAX-WS, JAX-RS
23/73 09/2024 S. Chabridon Component Middleware



2.2.1 EJB Container — Provided services III
■ Lifecycle service — Java Naming and Directory Interface

• Instances passivation
− Temporary saving of a bean when container needs memory

• Instances pooling
− For performance reasons, the container can instantiate less beans than there

are clients
− Then several clients share the same bean
− Possible only for beans without instance variables

• Pooling of connections to the Database
− All the beans of a server share a pool of connections to the DB
− Connections remain open and are used by beans

24/73 09/2024 S. Chabridon Component Middleware



2.3 Java EE at a glance

■ Java Platform, Enterprise Edition

■ Application server technology based on EJBs

■ Targets scalability, accessibility, security, integrity, and other requirements of
enterprise-class applications

■ Java API for RESTful Web Services (JAX-RS)

■ Contexts and Dependency Injection (CDI)

■ Bean Validation: same set of validations can be shared by all layers of an
application

■ Java Server Faces (JSF) supports Ajax

25/73 09/2024 S. Chabridon Component Middleware



2.3.1 Families of Java EE APIs

26/73 09/2024 S. Chabridon Component Middleware



2.3.2 From Java EE to Jakarta EE

27/73 09/2024 S. Chabridon Component Middleware



2.4 Java EE Architecture

28/73 09/2024 S. Chabridon Component Middleware



2.4.1 Java EE — 3-tier Architecture I

29/73 09/2024 S. Chabridon Component Middleware



2.4.1 Java EE — 3-tier Architecture II

■ Client

• Heavy weight client — Java application (or possibly other language)
• Light weight client — Web navigator

■ Application Server

• Reference implementation: GlassFish (Eclipse Foundation)
• Commercial products: WebSphere (IBM), WebLogic (BEA)...
• Open source distributions: jBoss, JOnAS (Objectweb), Geronimo, OpenEJB...

■ DBMS (DataBase Management System)

• Provide storage support for application data
• Mostly using a relational DBMS (Oracle, SQL Server, PostGreSQL...)

30/73 09/2024 S. Chabridon Component Middleware



2.5 EJB types I

■ Entity Beans

• Model real-world objects (e.g. Owner, Account) that exist in persistent storage
(DBMS or other storage accessible using JDBC [Java Database Connectivity])

• Persistent state is maintained through all method and server invocations
• Identified by a primary key
• Object-Relational mapping
• Implementation using JPA (Java Persistence API)

31/73 09/2024 S. Chabridon Component Middleware



2.5 EJB types II
■ Session Beans

• Model client activities
• Perform a task or process, and are therefore transient
• Do not exist outside a client session
• No persistent state
• Two kinds of session beans: stateless and stateful
• Manage actions that may cross entity beans or go outside the concern of an

entity bean
− e.g. Teller may authenticate the user and transfer funds between accounts
− e.g. Statement may include transactions from multiple accounts

■ Message-Driven Beans (since EJB 2.0)

• Listener processing messages asynchronously
• Only a bean class. No interface.

32/73 09/2024 S. Chabridon Component Middleware



2.5.1 Main EJB3 Annotations

■ @EJB: Denotes a reference to an EJB business interface or home interface.

■ @PersistenceContext: Used to express a dependency on an EntityManager.

■ @Stateful: Used to annotate a class as a stateful session bean component.

■ @Stateless: Used to annotate a class as a stateless session bean component.

■ @Remote: Applied to the session bean class or remote business interface to
designate a remote interface of the bean.

■ @MessageDriven: Specifies a message-driven bean. A message-driven bean
is a message consumer that can be called by its container.

33/73 09/2024 S. Chabridon Component Middleware



Stateless Session Bean — Calculator Example

■ @TransactionManagement: Declares whether a bean will have
container-managed or bean-managed transactions.

■ @TransactionAttribute: Applies a transaction attribute to all methods of a
business interface or to individual business methods on a bean class.
Can be specified on the bean class or on methods of the class that are
methods of the business interface.
Possible values:

• MANDATORY
• REQUIRED (default)
• REQUIRES NEW
• SUPPORTS
• NOT SUPPORTED
• NEVER

■ @WebService: Used on a class or an interface to define a Web service.
■ @WebMethod: Indicates whether the method is part or not of the interface

service endpoint interface (SEI) of the web service.
Exclude element false by default.

■ @WebServiceRef: Used on the client to reference web services.

34/73 09/2024 S. Chabridon Component Middleware



2.5.2 Bean development

■ An EJB has a remote interface to be accessed by clients

• Describes the provided services (methods)
• No longer required for session beans

■ Possibly an EJB may provide an interface for local access

• Describe the provided services offered to local clients
• Same as remote services, or different ones (enables optimisation)
• Can only be used within the same JVM as the EJB
• Gets compiled by the ejb compiler to create local stubs for container to

interpose transactions, access control, etc. on invocations.

■ An implementation class

35/73 09/2024 S. Chabridon Component Middleware



2.5.3 Interfaces

■ Remote Interface @Remote

• Interface presented to the outside world (contract definition) specifying the
business methods provided by the bean

• Gets compiled by the ejb compiler to create RMI stubs and skeletons
• Stubs are used by RMI to translate a method invocation to wire format
• Skeletons are used by RMI to translate wire format to a method invocation

■ NB: A client application never interacts with a bean class directly; It uses
the methods of the bean’s interface.

36/73 09/2024 S. Chabridon Component Middleware



2.6 Session Beans

■ Model business process being performed by a single client involving one or
more entity beans

■ Life duration linked to client’s one
■ Two types of session bean
• Stateful session bean

− maintains the conversational state between a client and the session bean
− may be serialized out and passivated to conserve system resources
− will be serialized in and activated when needed in the future
− e.g. Teller session bean logged into and transfers funds between accounts

• Stateless session bean
− does not maintain conversational state
− to be used for generic tasks, to read persistent data
− e.g. Statement that is given a list of accounts or an owner to generate a

textual report for
− consumes the least amount of resources among all the bean types

37/73 09/2024 S. Chabridon Component Middleware



Stateless Session Bean — Calculator Example

■ Calculator session bean: Simple calculator with 4 operations

■ Implementation code:

• Remote business interface (Calculator)
• Session bean class (CalculatorBean)

import jakarta.ejb.Remote; // Formerly javax package

@Remote
public interface Calculator {

public double add(double n1, double n2);
public double sub(double n1, double n2);
public double mul(double n1, double n2);
public double div(double n1, double n2);

}

38/73 09/2024 S. Chabridon Component Middleware



Stateless Session Bean — Calculator Example -
Implementation class

Possible to name a bean: @Stateless(name = ”myCalculator”)

import jakarta.ejb.Stateless;

@Stateless(name = "myCalculator")
public class CalculatorBean implements Calculator {

public double add(double n1, double n2) {return n1+n2;}
public double sub(double n1, double n2) {return n1-n2;}
public double mul(double n1, double n2) {return n1*n2;}
public double div(double n1, double n2) {return n1/n2;}

}

39/73 09/2024 S. Chabridon Component Middleware



Stateless Session Bean — Calculator Example -
Client side2 ways to get the reference of the business interface

■ dependency injection:

@EJB Calculator myCalc;

■ look-up in JNDI directory using the lookup method povided by
EJBContext interface and the bean interface name

import javax.naming.*; // NB: No change to this package name
public class myClient {

public static void main(String args[]) throws Exception {
Context myContext = new InitialContext();
Calculator myCalc =

(Calculator) myContext.lookup("myCalculator");
double result = myCalc.mul(2,4);

}
}

40/73 09/2024 S. Chabridon Component Middleware



Stateless Session Bean — No-interface view

■ When a bean does not have a remote interface, possible to access directly
to the bean implementation class via the no-interface view

■ But never use the new operator to acquire the reference
■ A no-interface view is a variant of a local view that exposes the non-static

public methods of the bean class
■ 2 ways to get the reference of the no-interface view of a session bean
• dependency injection:

@EJB CalculatorBean myCalc;

• look-up in JNDI directory using the lookup method povided by EJBContext
interface and the bean interface name

@Resource SessionContext myContext;
...
CalculatorBean myCalc =

(CalculatorBean) myContext.lookup("myCalculator");

41/73 09/2024 S. Chabridon Component Middleware



Stateful Session Bean — Cart Example

■ Cart session bean: represents a shopping cart in an online bookstore.

■ The bean’s client can add a book to the cart, remove a book, or retrieve the
cart’s contents.

■ Implementation code:

• Remote business interface (Cart)
• Session bean class (CartBean)

42/73 09/2024 S. Chabridon Component Middleware



Stateful Session Bean — Cart Example — Inter-
face

import java.util.List;
import jakarta.ejb.Remote;

@Remote
public interface Cart {

public void initialize(String person) throws BookException;
public void initialize(String person, String id)

throws BookException;
public void addBook(String title);
public void removeBook(String title) throws BookException;
public List<String> getContents();
public void remove();

}

43/73 09/2024 S. Chabridon Component Middleware



Stateful Session Bean — Cart Example — Imple-
mentation class

import java.util.ArrayList;
import java.util.List;
import jakarta.ejb.Remove;
import jakarta.ejb.Stateful;

@Stateful
public class CartBean implements Cart {

String customerName;
String customerId;
List<String> contents;
public void initialize(String person) throws BookException {

if (person == null) {
throw new BookException("Null person not allowed.");

} else { customerName = person; }
customerId = "0";
contents = new ArrayList<String>();

}

44/73 09/2024 S. Chabridon Component Middleware



Stateful Session Bean — Cart Example — Imple-
mentation class (cont.)

...

public void addBook(String title) { contents.add(title); }

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {

throw new BookException(title + " not in cart.");
}

}
public List<String> getContents() { return contents; }

@Remove // The container will remove the bean
public void remove() { contents = null; }

}

45/73 09/2024 S. Chabridon Component Middleware



Stateful Session Bean — Cart Example — Client
side

From the client’s perspective, the business methods appear to run locally, but
they actually run remotely in the session bean.

cart.create("Duke DeEarl");
...
cart.addBook("Bel Canto");
...

List<String> bookList = cart.getContents();
...
cart.removeBook("Gravity’s Rainbow");

46/73 09/2024 S. Chabridon Component Middleware



2.6.1 Asynchronous Method Invocation

■ Control returned to the client by the container before the method is invoked
on the session bean instance

■ Use Java SE concurrency API to retrieve the result, cancel the invocation,
or check for exceptions

■ Useful for long-running operations or to improve application response time

■ The result implements java.util.concurrent.Future <V > interface, ”V” is
the result value type

47/73 09/2024 S. Chabridon Component Middleware



Asynchronous Method Invocation — Session
bean side

■ Annotate a method or a class with @Asynchronous
(jakarta.ejb.Asynchronous)

■ Asynchronous methods return either void or an implementation of the
Future <V >interface

■ Result is returned to the container, not directly to the client

@Asynchronous
public Future<String> processPayment(Order order)
throws PaymentException {

...
String status = ...;
return new AsyncResult<String>(status);

}

48/73 09/2024 S. Chabridon Component Middleware



Asynchronous Method Invocation — Session
bean side

■ Check whether the client requested the invocation to be cancelled with
method jakarta.ejb.SessionContext.wasCancelled

@Asynchronous
public Future<String> processPayment(Order order) throws PaymentException {

...
if (SessionContext.wasCancelled()) {

// clean up
} else {

// process the payment
}
...

}

49/73 09/2024 S. Chabridon Component Middleware



2.6.2 Asynchronous Method Invocation — Client
side

■ Retrieve result using Future <V >.get() methods (synchronous method)

■ Use Future <V >.isDone to check wether processing has completed

■ Call Future <V >.cancel(boolean mayInterruptIfRunning) to cancel the
method invocation

■ Method Future <V >.isCancelled returns true if the invocation was
cancelled

50/73 09/2024 S. Chabridon Component Middleware



2.7 Entity Beans I

■ Represent a business object in a persistent storage mechanism

■ Can be shared by multiple clients

■ Can be linked to other entity beans (like relations in a relational DBMS)

■ Primary key required

• Defined using @Id annotation,
• Possible key types (or of the properties or fields of a composite primary key):

java primitive types (and associated wrapper classes), String, Date

51/73 09/2024 S. Chabridon Component Middleware



2.7 Entity Beans II
■ Object/relational mapping annotations to map entities and entity

relationships to relational tables

• Each EB class is mapped to one relational table
• table name = class name by default
• or use annotation @Table(name = “...′′)

■ 2 exclusive modes for the definition of table columns

• property-based access: annotate getter methods
• field-based access: annotate attributes

52/73 09/2024 S. Chabridon Component Middleware



Entity Bean — Example

@Entity
public class Book implements Serializable {

private String bookId;
private String author;
private String title;
public Book() { }
public Book(String author, String title) {

this.author = author;
this.title = title; }

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
public String getBookId() { return this.bookId; }

public String getTitle() { return this.title; }
public void setTitle(String title) { this.title=title; }
...

}

53/73 09/2024 S. Chabridon Component Middleware



2.7.1 Multiplicities in Entity Relationships

1. One-to-one: Each entity instance is related to a single instance of another
entity.

2. One-to-many: An entity instance can be related to multiple instances of the
other entities.

3. Many-to-one: Multiple instances of an entity can be related to a single
instance of the other entity.

4. Many-to-many: The entity instances can be related to multiple instances of
each other.

54/73 09/2024 S. Chabridon Component Middleware



Multiplicities in Entity Relationships — One-
ToMany example

@Entity
public class Author {
private long id;
private String name;
private Collection<Book> books;

public Author() { books = new ArrayList<Book>(); }
public Author(String name) {this.name = name; }

@OneToMany
public Collection<Book> getBooks() {return books; }

public void addBook(String title) {
Book aBook = new Book(this.name, title);
getBooks().add(aBook);
} }

55/73 09/2024 S. Chabridon Component Middleware



2.7.2 Persistence management mode

■ Persistence can be managed in two ways:

• Container-managed (CMP)
− Simplest to develop
− Bean code contains no database access calls

• Bean-managed (BMP)
− The client is required to explicitly write persistence logic by providing

implementation methods for Home interface
− More flexibility in how state is managed between the bean instance and the

database
− Used when deployment tools are inadequate

56/73 09/2024 S. Chabridon Component Middleware



2.7.3 Entity Manager

•■ Entry point of the persistence service

• Creates and removes persistent entity instances
• Finds entities by the entity’s primary key
• Allows queries to be run on entities

■ Associated with a persistence context

• Defines the scope under which particular entity instances are created, persisted
and removed

57/73 09/2024 S. Chabridon Component Middleware



Container-Managed Entity Manager

■ Propagation of the persistence context automatically to all application
components that use the EntityManager instance within a single JTA (Java
Transaction Architecture) transaction.

■ To obtain an EntityManager instance, inject the entity manager into the
application component:

@PersistenceContext
EntityManager em;

58/73 09/2024 S. Chabridon Component Middleware



Application-Managed Entity Manager

■ Each EntityManager creates a new, isolated persistence context

■ Life cycle of EntityManager instances managed by the application: The
EntityManager and its associated persistence context are created and
destroyed explicitly by the application.

■ To obtain an EntityManager instance, first get an EntityManagerFactory
instance:

@PersistenceUnit
EntityManagerFactory emf;

■ Then, obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

59/73 09/2024 S. Chabridon Component Middleware



How to use the Entity Manager — Example

import jakarta.ejb.*;
import jakarta.persistence.*;
public class BookDBAO {

@PersistenceContext
private EntityManager em;

public void init() {
Book b1 = new Book("Charles Beaudelaire","Les Fleurs du Mal");
Book b2 = new Book("Jules Verne","Voyage au centre de la Terre");
em.persist(b1);
em.persist(b2);

}
}

60/73 09/2024 S. Chabridon Component Middleware



2.7.4 Persistence Unit — persistence.xml file

■ Defines the set of all entity classes managed by EntityManager instances in
an application

■ Represents the data contained within a single data store

■ Packaged with the application archive file

■ XML elements:

• persistence element: global schema, includes a persistence-unit element
• persistence-unit element: name of a persistence unit and transaction type
• optional description element
• jta-data-source element: specifies the global JNDI name of the JTA data

source

61/73 09/2024 S. Chabridon Component Middleware



Persistence Unit — persistence.xml file — Exam-
ple

<persistence>
<persistence-unit name="OrderManagement">

<description>This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.

</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>

</persistence-unit>
</persistence>

62/73 09/2024 S. Chabridon Component Middleware



2.7.5 Entity Beans lifecycle

■ The container manages a pool of entity bean instances.
■ After a bean is instantiated, it is put in the pool. It is not associated to any

data but it is ready for use.
■ The methods create and remove are called by the client (via a session bean).
■ All other methods are implemented by the entity bean and called by the

container.

63/73 09/2024 S. Chabridon Component Middleware



2.8 Transaction Service I

■ Controls concurrent accesses to data by multiple programs

■ In case of a system failure, transactions make sure that after recovery the
data will be in a consistent state

■ Guarantees ACID properties for transactions
• Atomicity: Either all operations in the transaction complete successfully or

none.
• Consistency: The database is always in a valid state, so that two users see the

same value for any given data item.
• Isolation: Concurrent transactions give the same result as if they were

performed in isolation.
• Durability: The content of the database is stored on stable storage in a

persistent way and will not be lost.

■ Fully integrated within the EJB server

■ Main advantage compared to the CORBA middleware

64/73 09/2024 S. Chabridon Component Middleware



2.8 Transaction Service II
■ Specifies standard Java interfaces between a transaction manager and the

parties involved in a distributed transaction system

• Resource manager
• Application server
• Transactional applications

■ Transaction manager

• Decides whether to commit or rollback at the end of the transaction in a
distributed system and coordinates various resource managers

■ Resource manager

• Responsible for controlling the access to common resources in the distributed
system

65/73 09/2024 S. Chabridon Component Middleware



2.9 Message-driven Beans (MDB)

■ Can implement any messaging type

■ Handle asynchronous messages

■ Useful for non-blocking calls

■ Producer/consumer concept

■ Stateless — state is lost between 2 messages processing

■ All instances of a same MDB class are equivalent

■ Can process messages from several clients

■ No remote interface

■ The container delivers messages to a MDB using the onMessage() method

■ Same lifecyle as a stateless session bean

66/73 09/2024 S. Chabridon Component Middleware



Message-driven Beans types (MDB)

■ 2 communication modes
• Queue: 1 to 1 or n to 1
• Topic: 1 to n or n to m

67/73 09/2024 S. Chabridon Component Middleware



JMS architecture

The Java Message service provides MDB management

68/73 09/2024 S. Chabridon Component Middleware



MDB development

69/73 09/2024 S. Chabridon Component Middleware



MDB development

1. Create a connection using a ConnectionFactory

2. Create a session (possibly several sessions per connection):

• period of time for sending messages on a queue or topic
• may be transactional

3. Create a message

4. Send the message

5. Close the session

6. Close the connection

70/73 09/2024 S. Chabridon Component Middleware



MDB development — Producer example

public class myProducer {
@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource(mappedName="jms/Queue")
private static Queue queue;
public void produce() {
/* 1 */ Connection connection = connectionFactory.createConnection();
/* 2 */ Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);
MessageProducer messageProducer = session.createProducer(queue);
/* 3 */ TextMessage message = session.createTextMessage();
message.setText("This is a message ");
/* 4 */ messageProducer.send(message);
/* 5 */ session.close();
/* 6 */ connection.close();
} } }

71/73 09/2024 S. Chabridon Component Middleware



MDB development — Consumer example

@MessageDriven(mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {

public void onMessage(Message m) {
TextMessage message = (TextMessage) m;
message.getText();

...
}
}

72/73 09/2024 S. Chabridon Component Middleware



3 References

JSR345 - EJB 3.2: https://www.jcp.org/en/jsr/detail?id=345

C. Szyperski.
Component Software Beyond Object Oriented Programming.
Addison Wesley / ACM Press, New York, 1998.

R. Monson-Haefel.
Entreprise Java Beans.
O’Reilly, 2001.

J. Lafosse.
Développements n-tiers avec Java EE.
ENI Éditions, March 2011.

73/73 09/2024 S. Chabridon Component Middleware

https://www.jcp.org/en/jsr/detail?id=345

	Introduction
	Limits of object-oriented programming 
	Motivations for Component Based Development
	What is a component ?
	Runtime environment of a component
	Multi-tier Architecture
	Technologies for component middleware

	Overview of EJB Technology
	What is EJB ?
	EJB Container
	Java EE at a glance
	Java EE Architecture
	EJB types
	Session Beans
	Entity Beans
	Transaction Service
	Message-driven Beans (MDB)

	References

