SudParis
et i

N2 1P PARIS

Component Middleware
S. Chabridon

September 2024

_ Foreword

Structural Compositions Activity Orchestrations

) BolTEdumaue

il Outline

1. Introduction
2. Overview of EJB Technology

3. References

@ e

S. Chabridon Component Middleware

_ 1 Introduction

1. Introduction

1.1 Limits of object-oriented programming

1.2 Motivations for Component Based Development
1.3 What is a component ?

1.4 Runtime environment of a component

1.5 Multi-tier Architecture

1.6 Technologies for component middleware

2. Overview of EJB Technology

3. References

I 1.1 Limits of object-oriented programming

B A lot of tasks must be done manually

Object instantiation

Service invocation via direct access to object reference + explicit method call
Definition of dependencies between classes

Almost no tool for application deployment (installation of executable files on
the various sites)

B Applications structure difficult to understand (= set of files)
B Difficult to modify or extend an existing application

¥ communication mode
® modification of system/technical services

" assembly

B Building an application using black-box classes makes it difficult

® to introduce new references to other objects
® to inherit from other classes

S. Chabridon Component Middleware B

I 1.2 Motivations for Component Based Develop-
ment

Programming in the large versus programming in the small

B Applications are built by assembling existing components

B Notion of connector: Components are connected with one another defining
a software architecture

B Formalism to describe interactions between components
B Formalism to describe the deployment of components

B Separation of concerns: Separate functional from non-functional or
extra-functional aspects to allow for more reusability

B Focus on application concerns (functional) rather than technical problems
(extra-functional)

S. Chabridon Component Middleware B

B 1 3 What is a component ?

No consensus on a unique definition. Each platform has its own definition !

B According to [1]:

A unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

Context dependencies: required interfaces and execution environments
(platforms)

A binary unit - not source code!

— This means that a class library is not a component

No persistent state - a component is not an instance of itself

Much like classes are not objects

S. Chabridon Component Middleware

I 1.3.1 Characterization of a component

A software module

That is a contractual specification by exporting some attributes, properties
and methods

That provides interfaces to other components and requires some interfaces
from other components

That has no persistent state
That has pre- and post-conditions

That is configurable by setting properties

That is independently deployable and composable

I 1.4 Runtime environment of a component |

Application Server Application Server

Container Container

| 1 Component

[—

Component || Connectipns
\\
\\

Component

a
v

z = = 5 E

p 2 5 5 5

wn 70! n [75) »
System / Middleware

9/73 09/2024 S. Chabridon Component Middleware "

I 1.4 Runtime environment of a component |l

B Container

® Encapsulates components

® Provides system/technical services

® Maintains connections between components
|

Deals with invocations and events

B Application server

® Runtime environment for containers

mediator between the containers and the system/middleware

S. Chabridon Component Middleware

_ 1.4.1 Technical services

B Resource Management

® Ressource pooling

® Activation/deactivation mechanism
B Naming and directory
B Synchronous/asynchronous communication
B Transaction

B Persistence

B Security

1.5 Multi-tier Architecture

Presentation Tier

Public Facing
Web Site

Administrative
Web Site

Logic Tier

Business Logic

Application Logic

”
Data Access Tier

Data Tier --

Database

12/73 09/2024

File Store

Database

Archive Log

N-tier

Developing the application
from the ground up using
distinct tiers (layers) should
simplify development.

Tiers

Presentation

manages the delivery of
information the end user
Logic

split into two distinct tiers, the
business logic deals with what
'we want the application to do
whilst the application logic
deals with how the application
waorks with the platform.

Data Access

How to get the information
needed out of the database,
and how to put it back in

Data

Concerned with data at a low
level including performance
management, indexing, backup
and logging.

www jasonsiater.couk

S. Chabridon Component Middleware

B 1.5.1 The 6 roles in component development |

1. Component Provider

B Develops components

B Provides component metadata: structural information (component logical
name, transaction demarcation, persistence requirements...) and component
external dependencies

B Metadata may be expressed in annotations or in an XML deployment
descriptor

2. Application Assembler
B Assembles application components into a single deployable unit

B Defines security roles for application clients, method permissions...

13/73 09/2024 S. Chabridon Component Middleware -

B 1.5.1 The 6 roles in component development Il

3. Deployer
B Uses information provided by the component provider and the assembler

B Resolves component dependencies
B Deploys the application in an operational environment including a container

and a server

4. Server Provider

B Responsible of distributed transaction management, distributed objets
management, low-level system tasks

B OS vendor, Middleware vendor or DBMS vendor

S. Chabridon Component Middleware

BN 1.5.1 The 6 roles in component development IlI

5. Container Provider
B Provides deployment tools and runtime support for components

B Focus on the development of a scalable, secure, transaction-enabled
container

6. System Administrator

B Responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure

B Oversees the well-being of the deployed applications

B Monitors the log of non-application exceptions and errors logged by the
container

B Takes actions to correct the problems caused by exceptions and errors

15/73 09/2024 S. Chabridon Component Middleware -

I 1 .6 Technologies for component middleware |

B Entreprise Java Beans

¥ Supported by Eclipse Foundation, as part of Eclipse Enterprise for Java (EE4J)
initiative https://projects.eclipse.org/projects/ee4j

Initially developed by Sun Microsystems in 2005, then sponsored by Oracle
until 2019

Application server: Jakarta EE 9
https://jakarta.ee/specifications/platform/9.1/

® ONE LANGUAGE, MANY PLATFORMS

B NET

® Supported by Microsoft https://docs.microsoft.com/en-us/dotnet/

® MANY LANGUAGES (C#, F#, or Visual Basic), MANY PLATFORMS
(Initially only on Windows)

S. Chabridon Component Middleware

https://projects.eclipse.org/projects/ee4j
https://jakarta.ee/specifications/platform/9.1/
https://docs.microsoft.com/en-us/dotnet/

I 1 .6 Technologies for component middleware |1

B Spring Framework

® Supported by Spring https://spring.io/projects/spring-framework
® Relies on dependency injection and aspects
u

Lightweight application server enriched with a wide ecosystem

B CORBA Component Model (CCM)

® Supported by the Object Management Group (OMG) WWW.0mg.org

® EJB specification can be seen as a subset of CCM specification

® MANY LANGUAGES, MANY PLATFORMS

S. Chabridon Component Middleware

https://spring.io/projects/spring-framework

I > Overview of EJB Technology

1. Introduction

2. Overview of EJB Technology
2.1 Whatis EJB?

2.2 EJB Container

2.3 Java EE at a glance

2.4 Java EE Architecture

2.5 EJB types

2.6 Session Beans

2.7 Entity Beans

2.8 Transaction Service

2.9 Message-driven Beans (MDB)

3. References

S. Chabridon Component Middleware i

I > 1 What is EJB ?

B Enterprise Java Beans

B Java component model for distributed enterprise applications, released by
Sun in 1998

B EJB 3.0 specification (2006) - JSR 220

B EJB 3.1 specification (2009) - JSR 318

B EJB 3.2 specification (2013) - JSR 345

B Definitions 2, 3:
® EJB are standard server-side components for component transaction monitors

(CTM)

|

EJB technology defines a model for the development of reusable Java server
components that encapsulate the business logic of an application

S. Chabridon Component Middleware

N > 1.1 The Java Community Process (JCP)

B www.jcp.org

B |nternational developer community whose charter is to develop and evolve
Java technology

® specifications,

® reference implementations,

® and technology compatibility kits.

B Company, organization, or individual can be member

S. Chabridon Component Middleware i

I > 2> E)B Container

B Runtime environment for creation and lifecycle management of bean
instances

B Gives access to a set of standardized services to beans
B Provides a context with:

® Configuration properties
® References to other components

® References to technical services

@ e

S. Chabridon Component Middleware

_2.2.1 EJB Container — Provided services |

B Includes many Java technologies, that can be used independently of EJB
B Java 2 Platform, Standard Edition (J2SE) APIs

® RMI-IIOP - remote method invocation based on CORBA Interoperable

Inter-ORB Protocol

® JDBC (Java DataBase Connectivity)

® JSP (Java Server Pages) — Web clients

" JAXP (Java API for XML Processing)

® Java IDL — adds CORBA capability to the Java platform

S. Chabridon Component Middleware

_2.2.1 EJB Container — Provided services ||

B Current services are frozen

B Research initiatives (s.a. Objectweb JOnAS) provide extensible containers
with pluggable services

B EJB APIs (javax package, now jakarta package in Eclipse implementation),
including Java Persistence (JPA)

B Asynchronous communication: Java Messaging Service (JMS), JavaMail
B Connector

B Transaction: UserTransaction interface of JTA, Java Transaction Service
(JTS) (specification based on CORBA Object Transaction Service)

B Security: Java Security API
B \Web Services: JAX-RPC, JAX-WS, JAX-RS

S. Chabridon Component Middleware

_2.2.1 EJB Container — Provided services |l

B [ifecycle service — Java Naming and Directory Interface

® Instances passivation
— Temporary saving of a bean when container needs memory
® Instances pooling
For performance reasons, the container can instantiate less beans than there
are clients
— Then several clients share the same bean
— Possible only for beans without instance variables
L]

Pooling of connections to the Database

All the beans of a server share a pool of connections to the DB

Connections remain open and are used by beans

S. Chabridon Component Middleware

I > 3 Java EE at a glance

B Java Platform, Enterprise Edition
B Application server technology based on EJBs

B Targets scalability, accessibility, security, integrity, and other requirements of
enterprise-class applications

B Java API for RESTful Web Services (JAX-RS)
B Contexts and Dependency Injection (CDI)

B Bean Validation: same set of validations can be shared by all layers of an
application

B Java Server Faces (JSF) supports Ajax

S. Chabridon Component Middleware

I 2 3.1 Families of Java EE APls

~

Web Application Enterprise Application

Serviet, WebSocket, EJB, CDI, BV, JPA,
JavaServer Faces,

Batch, JMS, JTA, JavaMail,
JSON-P, JSON-B, etc. JCA, Concurrency, etc.
L

Web Services [Management / Security)

JAX-RS, JAX-WS, SAAJ,

JMX, Management,
JAXP, JAXB, StAX, etc

Security, JACC, JASPIC, etc.

26/73 09/2024 S. Chabridon Component Middleware

I 2 3.2 From Java EE to Jakarta EE

High Level Roadmap

Eclipse GlassFish 5.X ha

/__{\ JAKARTA EE
& il Jakarta EE 9

4

Eclipse GlassFish 5.2 >

JAKARTA EE
\f_i " Jakarta EE 8
Eclipse GlassFish 5.1 =

Sources,
TCKs, Docs

Oracle GlassFish 5.0 =2 Java
&1

<L

ECLIPSE

S. Chabridon Component Middleware i

_2.4 Java EE Architecture

'WEB Container

Browser
http . Servlets
S JSPs JDBC
html
— ™S
JTA
Applets rmi JCA
) rmi
rmi

public static
void main(...
"

Java Application

EJB Container

DB
-

[P
.

EIS

Java EE Application Server

Uity

I 2 4.1 Java EE — 3-tier Architecture |

[Java EE Application 1 Java EE Application 2)
= [EEm—
Client
- Client Tier [~ M;?::Ine
Application Dynamic
\ Client HTML Pages)

- v
- JSP Pages Web Tier
==
| Java EE
Server
v
Enterprise Bea Enterprise Beans Business Tier

D
Database

v

.' Database
EISTier [~ sarver

S. Chabridon

Component Middleware

I > ;.1 Java EE — 3-tier Architecture Il

B Client

® Heavy weight client — Java application (or possibly other language)

® Light weight client — Web navigator

B Application Server

® Reference implementation: GlassFish (Eclipse Foundation)

® Commercial products: WebSphere (IBM), WebLogic (BEA)...

® Open source distributions: jBoss, JOnAS (Objectweb), Geronimo, OpenEJB...
B DBMS (DataBase Management System)
|

Provide storage support for application data
® Mostly using a relational DBMS (Oracle, SQL Server, PostGreSQL...)

S. Chabridon Component Middleware

I > 5 £)B types |

B Entity Beans

31/73 09/2024 S. Chabridon Component Middleware -

Model real-world objects (e.g. Owner, Account) that exist in persistent storage
(DBMS or other storage accessible using JDBC [Java Database Connectivity])

Persistent state is maintained through all method and server invocations
Identified by a primary key

Object-Relational mapping

Implementation using JPA (Java Persistence API)

I > 5 EJB types ||

B Session Beans

® Model client activities

® Perform a task or process, and are therefore transient
® Do not exist outside a client session

No persistent state

® Two kinds of session beans: stateless and stateful

® Manage actions that may cross entity beans or go outside the concern of an
entity bean

— e.g. Teller may authenticate the user and transfer funds between accounts

e.g. Statement may include transactions from multiple accounts

B Message-Driven Beans (since EJB 2.0)

® Listener processing messages asynchronously

® Only a bean class. No interface.

S. Chabridon Component Middleware

I 2 5.1 Main EJB3 Annotations

©@EJB: Denotes a reference to an EJB business interface or home interface.
@PersistenceContext: Used to express a dependency on an EntityManager.
@Stateful: Used to annotate a class as a stateful session bean component.

@Stateless: Used to annotate a class as a stateless session bean component.

©@Remote: Applied to the session bean class or remote business interface to
designate a remote interface of the bean.

B ©@MessageDriven: Specifies a message-driven bean. A message-driven bean
is a message consumer that can be called by its container.

33/73 09/2024 S. Chabridon Component Middleware -

I S:ateless Session Bean — Calculator Example

B QTransactionManagement: Declares whether a bean will have
container-managed or bean-managed transactions.

B QTransactionAttribute: Applies a transaction attribute to all methods of a
business interface or to individual business methods on a bean class.
Can be specified on the bean class or on methods of the class that are
methods of the business interface.
Possible values:

MANDATORY
REQUIRED (default)
REQUIRES_NEW
SUPPORTS

NOT _SUPPORTED
NEVER

B ©\WebService: Used on a class or an interface to define a Web service.

B ©\WebMethod: Indicates whether the method is part or not of the interface

I © 5.2 Bean development

B An EJB has a remote interface to be accessed by clients
® Describes the provided services (methods)

® No longer required for session beans

B Possibly an EJB may provide an interface for local access

Describe the provided services offered to local clients
Same as remote services, or different ones (enables optimisation)
® Can only be used within the same JVM as the EJB

Gets compiled by the ejb compiler to create local stubs for container to
interpose transactions, access control, etc. on invocations.

B An implementation class

4 S. Chabridon Component Middleware

il 2.5.3 Interfaces

B Remote Interface ©ORemote

® Interface presented to the outside world (contract definition) specifying the
business methods provided by the bean

® Gets compiled by the ejb compiler to create RMI stubs and skeletons
® Stubs are used by RMI to translate a method invocation to wire format

® Skeletons are used by RMI to translate wire format to a method invocation

B NB: A client application never interacts with a bean class directly; It uses
the methods of the bean's interface.

024 S. Chabridon Component Middleware

_2.6 Session Beans

B Model business process being performed by a single client involving one or
more entity beans

B |ife duration linked to client's one

B Two types of session bean

Stateful session bean

maintains the conversational state between a client and the session bean
may be serialized out and passivated to conserve system resources

will be serialized in and activated when needed in the future

e.g. Teller session bean logged into and transfers funds between accounts

Stateless session bean

does not maintain conversational state
to be used for generic tasks, to read persistent data

e.g. Statement that is given a list of accounts or an owner to generate a
textual report for

consumes the least amount of resources among all the bean types

I S:ateless Session Bean — Calculator Example

B Calculator session bean: Simple calculator with 4 operations
B |mplementation code:

® Remote business interface (Calculator)

® Session bean class (CalculatorBean)

import jakarta.ejb.Remote; // Formerly javax package

ORemote

public interface Calculator {
public double add(double nl, double n2);
public double sub(double nl, double n2);
public double mul(double nl, double n2);
public double div(double nl, double n2);

S. Chabridon Component Middleware i

I S:ateless Session Bean — Calculator Example -
Implementation class

Possible to name a bean: @Stateless(name = "myCalculator™)

import jakarta.ejb.Stateless;

@Stateless(name = "myCalculator")

public class CalculatorBean implements Calculator {
public double add(double nl, double n2) {return nl+n2;}
public double sub(double ni, double n2) {return nl-n2;}
public double mul(double nl, double n2) {return nil*n2;3}
public double div(double nl, double n2) {return n1/n2;}

S. Chabridon Component Middleware

I S:ateless Session Bean — Calculator Example -

2 ways tg:lgle? tt;'a rse%gre%ce of the business interface

B dependency injection:
QEJB Calculator myCalc;

B look-up in JNDI directory using the Lookup method povided by
EJBContext interface and the bean interface name

import javax.naming.*; // NB: No change to this package name
public class myClient {
public static void main(String args[]) throws Exception {
Context myContext = new InitialContext();
Calculator myCalc =
(Calculator) myContext.lookup("myCalculator");
double result = myCalc.mul(2,4);

S. Chabridon Component Middleware

_ Stateless Session Bean — No-interface view

B When a bean does not have a remote interface, possible to access directly
to the bean implementation class via the no-interface view

B But never use the new operator to acquire the reference

B A no-interface view is a variant of a local view that exposes the non-static
public methods of the bean class

B 2 ways to get the reference of the no-interface view of a session bean
® dependency injection:
@EJB CalculatorBean myCalc;

® look-up in JNDI directory using the lookup method povided by EJBContext

interface and the bean interface name

OResource SessionContext myContext;

CalculatorBean myCalc =
(CalculatorBean) myContext.lookup("myCalculator");

41/73 09/2024 S. Chabridon Component Middleware

I Siateful Session Bean — Cart Example

B Cart session bean: represents a shopping cart in an online bookstore.

B The bean's client can add a book to the cart, remove a book, or retrieve the
cart’s contents.

B |mplementation code:

¥ Remote business interface (Cart)

B Session bean class (CartBean)

S. Chabridon Component Middleware B

I S:ateful Session Bean — Cart Example — Inter-
face

import java.util.List;
import jakarta.ejb.Remote;

O@Remote
public interface Cart {
public void initialize(String person) throws BookException;
public void initialize(String person, String id)
throws BookException;
public void addBook(String title);
public void removeBook(String title) throws BookException;
public List<String> getContents();
public void remove();

S. Chabridon Component Middleware

I S:oteful Session Bean — Cart Example — Imple-

mentation class
import java.util.ArrayLlist;
import java.util.List;
import jakarta.ejb.Remove;
import jakarta.ejb.Stateful;

OStateful
public class CartBean implements Cart {
String customerName;
String customerld;
List<String> contents;
public void initialize(String person) throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else { customerName = person; }
customerId = "0";
contents = new ArrayList<String>();

S. Chabridon Component Middleware

I S:oteful Session Bean — Cart Example — Imple-
mentation class (cont.)

public void addBook(String title) { contents.add(title); 7

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {
throw new BookException(title + " not in cart.");
}

}
public List<String> getContents() { return contents; }

@Remove // The container will remove the bean
public void remove() { contents = null; }

S. Chabridon Component Middleware

I S:toteful Session Bean — Cart Example — Client
side

From the client's perspective, the business methods appear to run locally, but
they actually run remotely in the session bean.

cart.create("Duke DeEarl");
cart.addBook("Bel Canto");
List<String> bookList = cart.getContents();

cart.removeBook("Gravity’s Rainbow");

S. Chabridon Component Middleware i

I - 6.1 Asynchronous Method Invocation

B Control returned to the client by the container before the method is invoked
on the session bean instance

B Use Java SE concurrency API to retrieve the result, cancel the invocation,
or check for exceptions

B Useful for long-running operations or to improve application response time

B The result implements java.util.concurrent.Future <V > interface, "V" is
the result value type

47/73 09/2024 S. Chabridon Component Middleware -

_Asynchronous Method Invocation — Session
bean side

B Annotate a method or a class with @Asynchronous
(jakarta.ejb.Asynchronous)

B Asynchronous methods return either void or an implementation of the
Future <V >interface

B Result is returned to the container, not directly to the client

Q@Asynchronous
public Future<String> processPayment (Order order)
throws PaymentException {

String status = ...;
return new AsyncResult<String>(status);

S. Chabridon Component Middleware

_Asynchronous Method Invocation — Session
bean side

B Check whether the client requested the invocation to be cancelled with
method jakarta.ejb.SessionContext.wasCancelled

Q@Asynchronous
public Future<String> processPayment(Order order) throws PaymentExce;

if (SessionContext.wasCancelled()) {
// clean up

} else {
// process the payment

}

S. Chabridon Component Middleware

I - 6.2 Asynchronous Method Invocation — Client
side

B Retrieve result using Future <V >.get() methods (synchronous method)
B Use Future <V >.isDone to check wether processing has completed

B Call Future <V >.cancel(boolean maylnterruptlfRunning) to cancel the
method invocation

B Method Future <V >.isCancelled returns true if the invocation was
cancelled

S. Chabridon Component Middleware T

N > 7 Entity Beans |

B Represent a business object in a persistent storage mechanism

B Can be shared by multiple clients

B Can be linked to other entity beans (like relations in a relational DBMS)
B Primary key required

® Defined using @/d annotation,

" Possible key types (or of the properties or fields of a composite primary key):
java primitive types (and associated wrapper classes), String, Date

S. Chabridon Component Middleware B

N > 7 Entity Beans Il

B Object/relational mapping annotations to map entities and entity
relationships to relational tables

® Each EB class is mapped to one relational table
® table name = class name by default

" or use annotation @ Table(name = “..."")

B 2 exclusive modes for the definition of table columns

® property-based access: annotate getter methods

® field-based access: annotate attributes

S. Chabridon Component Middleware

Nl Entity Bean — Example

@Entity
public class Book implements Serializable {
private String bookId;
private String author;
private String title;
public Book() { }
public Book(String author, String title) {
this.author = author;

this.title = title; }
@Id
Q@GeneratedValue (strategy=GenerationType.AUTO)
public String getBookId() { return this.bookId; }
public String getTitle() { return this.title; }

public void setTitle(String title) { this.title=title; }

S. Chabridon Component Middleware

I > 7.1 Multiplicities in Entity Relationships

1. One-to-one: Each entity instance is related to a single instance of another
entity.

2. One-to-many: An entity instance can be related to multiple instances of the
other entities.

3. Many-to-one: Multiple instances of an entity can be related to a single
instance of the other entity.

4. Many-to-many: The entity instances can be related to multiple instances of
each other.

S. Chabridon Component Middleware i

_Multiplicities in Entity Relationships — One-
ToMany example

@Entity

public class Author {

private long id;

private String name;

private Collection<Book> books;

public Author() { books = new ArrayList<Book>(); }
public Author(String name) {this.name = name; }

@0OneToMany
public Collection<Book> getBooks() {return books; }

public void addBook(String title) {
Book aBook = new Book(this.name, title);
getBooks () .add (aBook) ;

o3

S. Chabridon Component Middleware

I > 7.2 Persistence management mode

B Persistence can be managed in two ways:

® Container-managed (CMP)

— Simplest to develop

Bean code contains no database access calls
® Bean-managed (BMP)

— The client is required to explicitly write persistence logic by providing
implementation methods for Home interface

More flexibility in how state is managed between the bean instance and the
database

Used when deployment tools are inadequate

56/73 09/2024 S. Chabridon Component Middleware -

N > 7 3 Entity Manager

W Entry point of the persistence service

® Creates and removes persistent entity instances
® Finds entities by the entity’s primary key
u

Allows queries to be run on entities

B Associated with a persistence context

Defines the scope under which particular entity instances are created, persisted
and removed

S. Chabridon Component Middleware

_Container—Managed Entity Manager

B Propagation of the persistence context automatically to all application
components that use the EntityManager instance within a single JTA (Java
Transaction Architecture) transaction.

B To obtain an EntityManager instance, inject the entity manager into the
application component:

@PersistenceContext
EntityManager em;

S. Chabridon Component Middleware B

_Application-Managed Entity Manager

B Each EntityManager creates a new, isolated persistence context

B Life cycle of EntityManager instances managed by the application: The
EntityManager and its associated persistence context are created and
destroyed explicitly by the application.

B To obtain an EntityManager instance, first get an EntityManagerFactory
instance:

@Persistencelnit
EntityManagerFactory emf;

B Then, obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

S. Chabridon Component Middleware

I How to use the Entity Manager — Example

import jakarta.ejb.*;
import jakarta.persistence.x*;
public class BookDBAO {

@PersistenceContext
private EntityManager em;

public void init() {
Book bl = new Book("Charles Beaudelaire","Les Fleurs du Mal");
Book b2 = new Book("Jules Verne","Voyage au centre de la Terre")
em.persist(bl);
em.persist(b2);

S. Chabridon Component Middleware

I > 7.4 Persistence Unit — persistence.xml file

B Defines the set of all entity classes managed by EntityManager instances in
an application

B Represents the data contained within a single data store
B Packaged with the application archive file

B XML elements:

B persistence element: global schema, includes a persistence-unit element
B persistence-unit element: name of a persistence unit and transaction type
® optional description element

B jta-data-source element: specifies the global JNDI name of the JTA data
source

61/73 09/2024 S. Chabridon Component Middleware -

B Peisistence Unit — persistence.xml file — Exam-
ple

<persistence>
<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
</persistence-unit>
</persistence>

S. Chabridon Component Middleware

N > 7 5 Entity Beans lifecycle

B The container manages a pool of entity bean instances.

B After a bean is instantiated, it is put in the pool. It is not associated to any
data but it is ready for use.

B The methods create and remove are called by the client (via a session bean).

B All other methods are implemented by the entity bean and called by the
container.

——

Dogs Not
Exist

_2.8 Transaction Service |

B Controls concurrent accesses to data by multiple programs

B |n case of a system failure, transactions make sure that after recovery the
data will be in a consistent state

B Guarantees ACID properties for transactions

® Atomicity: Either all operations in the transaction complete successfully or
none.

® Consistency: The database is always in a valid state, so that two users see the
same value for any given data item.

® |solation: Concurrent transactions give the same result as if they were
performed in isolation.

[

Durability: The content of the database is stored on stable storage in a
persistent way and will not be lost.

B Fully integrated within the EJB server

B Main advantage compared to the CORBA middleware

4 S. Chabridon Component Middleware

_2.8 Transaction Service |l

B Specifies standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system

® Resource manager
® Application server
u

Transactional applications

B Transaction manager

® Decides whether to commit or rollback at the end of the transaction in a

distributed system and coordinates various resource managers

B Resource manager

® Responsible for controlling the access to common resources in the distributed

system

___pX Message-driven Beans (MDB)

Can implement any messaging type

Handle asynchronous messages

Useful for non-blocking calls

Producer/consumer concept

Stateless — state is lost between 2 messages processing
All instances of a same MDB class are equivalent

Can process messages from several clients

No remote interface

The container delivers messages to a MDB using the onMessage() method

Same lifecyle as a stateless session bean

66/73 09/2024 S. Chabridon Component Middleware -

— = Message-driven Beans types (MDB)

B 2 communication modes

® Queue: 1tolorntol

® Topic: 1tonorntom

P2P: Point-to-Point

JMS Broker
Publisher
. ~q Consumers
Q@G 0000
Queues
Pub/Sub: Publish and Subscribe
' JMS Broke Consumers :
roker
Publisher /'.
R
Topics \\\j:"
@

@ e

il JMS architecture

The Java Message service provides MDB management

JMS Message
Service
Broker
JMS Message
Producers
JMS Message
JMS
component | | || L.
or i i
MDB i
Application i Contaier i
=F__E_JB [i I H' MEE !
! ontainer | ! Instance i
! EJB !——.‘ Destinations [P SE——
]
! Instance i onNenaaget]
]

S. Chabridon Component Middleware i

I DB development

Connection
Factory
Creates
Connections
Creates
Sessions
Creates Creates
Message Message
Producers Consumers
Message
Produces Consumes
o from

<4 C D
® ®

Destination Destination

@ e

I DB development

1. Create a connection using a ConnectionFactory
2. Create a session (possibly several sessions per connection):

® period of time for sending messages on a queue or topic

® may be transactional

3. Create a message
4. Send the message
5. Close the session

6. Close the connection

I DB development — Producer example

public class myProducer {

OResource (mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;
@Resource (mappedName="jms/Queue")

private static Queue queue;

public void produce() {

/* 1 x/ Connection connection = connectionFactory.createConnection()

/* 2 x/ Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;

MessageProducer messageProducer = session.createProducer(queue);
/* 3 x/ TextMessage message = session.createTextMessage();
message.setText ("This is a message ");

/* 4 x/ messageProducer.send(message);

/* 5 x/ session.close();

/* 6 x/ connection.close();

11}

S. Chabridon Component Middleware

I DB development — Consumer example

@MessageDriven (mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {

public void onMessage(Message m) {
TextMessage message = (TextMessage) m;
message.getText();

il 3 References

JSR345 - EJB 3.2: https://www.jcp.org/en/jsr/detail?id=345
C. Szyperski.

Component Software Beyond Object Oriented Programming.
Addison Wesley / ACM Press, New York, 1998.

R. Monson-Haefel.
Entreprise Java Beans.
O'Reilly, 2001.

J. Lafosse.
Développements n-tiers avec Java EE.
ENI Editions, March 2011.

S. Chabridon Component Middleware T

https://www.jcp.org/en/jsr/detail?id=345

	Introduction
	Limits of object-oriented programming
	Motivations for Component Based Development
	What is a component ?
	Runtime environment of a component
	Multi-tier Architecture
	Technologies for component middleware

	Overview of EJB Technology
	What is EJB ?
	EJB Container
	Java EE at a glance
	Java EE Architecture
	EJB types
	Session Beans
	Entity Beans
	Transaction Service
	Message-driven Beans (MDB)

	References

