
Architecture

François Trahay

1

Introduction

Why this lecture?

To understand what is happening in the “hardware” part of the execution stack

To write programs that are efficient on modern machines

2

Moore’s Law

1965 - 2005

Moore’s Law (1965): the number of transistors in microprocessors doubles every two years

The fineness of the processor engraving decreases

The clock frequency increases

⟹ Increased processor performance

Since 2005

The fineness of engraving continues to decrease (but less quickly)

The clock frequency no longer increases due to heat dissipation

Heat dissipation depends on the frequency, and the number of transistors

Multiple computing units per processor

3

Evolution of processors performance

Source: https://github.com/karlrupp/microprocessor-trend-data

4

https://github.com/karlrupp/microprocessor-trend-data

Sequential processor
An instruction requires N steps

Fetch: load instruction from memory

Decode: identify the instruction

Execute: execution of the instruction

Writeback: storage of the result

Each step is processed by a processor circuit

Most circuits are not used at every stage → One instruction is executed every N cycles

5

Instruction pipeline
At each stage, several circuits are used

→ One instruction is executed at each cycle

Execution of instructions on a processor with pipeline

6

Micro architecture of a pipeline

Each stage of the pipeline is implemented by a set of logic gates

Execute step: one subcircuit per type of operation (functional unit)

Micro-architecture of a pipeline

7

Superscalar processors

Use of different functional units simultaneously

⟹ several instructions executed simultaneously!

Require to load and decode several instructions simultaneously

8

Superscalar processors throughput

9

Dependence between instructions

Limitations of the superscalar:

There should be no dependency between statements executed simultaneously.

Example of non-parallelizable instructions

Degree of parallelism of the instructions: Instruction Level Parallelism (ILP)

Instructions executed in parallel must use different functional units

a = b * c;

d = a + 1;

10

Branching

How to fill the pipeline when the instructions contain conditional jumps?

In case of a bad choice: the pipeline must be “emptied”

⟹ waste of time

 cmp a, 7 ; a > 7 ?

 ble L1

 mov c, b ; b = c

 br L2

L1: mov d, b ; b = d

L2: ...

11

Branch prediction

The processor implements a prediction algorithm

General idea:

For each conditional jump, store the previous results

0x12 loop:

 ...

0x50 inc eax

0x54 cmpl eax, 10000

0x5A jl loop

0x5C end_loop:

 ...

12

Vector instructions

Many applications run in Data Parallelism mode

Single Instruction, Multiple Data (SIMD): the same operation applied to a set of data

Example: image processing, scientific computing

Using vector instructions (MMX, SSE, AVX, …)

Instructions specific to a processor type

Process the same operation on multiple data at once

for(i=0; i<size; i++) {

 C[i] = A[i] * B[i];

}

for(i=0; i<size; i+= 8) {

 *pC = _mm_mul_ps(*pA, *pB);

 pA++; pB++; pC++;

}

13

Parallel Processing

14

Hyperthreading / SMT

Problem with superscalar / vector processors:

The application must have enough parallelism to exploit

Other applications may be waiting for the CPU

Simultaneous Multi-Threading (SMT, or Hyperthreading)

Modify a superscalar processor to run multiple threads

Duplicate some circuits

Share certain circuits (eg FPU) between processing units

15

Multi-core processors

Limited scalability of SMT

dispatcher is shared

FPU is shared

→ Duplicate all the circuits

16

Symmetric Multi-Processing (SMP)

Multiple processors sockets on a motherboard

The processors share the system bus

Processors share memory

Scalability problem: contention when accessing the bus

17

NUMA architectures

NUMA nodes connected by a fast network

Memory consistency between processors

Privileged access to the local

Access possible (with an additional cost) to memory banks located on other nodes

→ Non-Uniform Memory Architecture

18

Memory hierarchy

19

Memory wall

Until 2005: increase in CPU performance: 55 % / year

Since 2005: increase in the number of cores per processor

Increased memory performance: 10 % / year

The memory accesses which are now expensive: Memory Wall

Mechanisms are needed to improve memory performance

20

Cache memory

Memory access (RAM) are very expensive (approx. 60 ns - approx. 180 cycles)

To speed up memory access, let’s use a fast cache memory:

L1 cache: very small capacity (typically: 64 KiB), very fast (approx. 4 cycles)

L2 cache: small capacity (typical: 256 KiB), fast (approx. 10 cycles)

L3 cache: large capacity (typically: between 4 MiB and 30 MiB), slow (approx. 40 cycles)

Very expensive hard disk access (SWAP): approx. 40 ms (150 μs on an SSD disk)

21

Memory Management Unit (MMU)

Translates virtual memory addresses into

physical addresses

Look in the TLB (Translation Lookaside Buffer),

then in the page table

Once the physical address is found, request the

data from the cache / memory

22

Fully-associative caches

Cache = array with N entries

For each reference, search for Tag in the array

If found (cache hit) and Valid = 1: access to the cache

line Data

Otherwise (cache miss): RAM access

Problem: need to browse the whole table

→ Mainly used for small caches (ex: TLB)

23

Direct-mapped caches

Using the least significant bits of the address to find the

index of the entry in the cache

Comparison of the Tag (most significant bits) of the

address and the entry.

→ Direct access to the cache line

Warning: risk of collision

example: 0x12345678 and 0xbff72678

24

Set-associative caches

Index to access a set of K cache lines

Search for the Tag among the addresses of the set

→ K-way associative cache (in French: Cache associatif K-

voies)

25

Cache consistency

What if 2 threads access the same cache line?

Concurrent read: replication in local caches

Concurrent write: need to invalidate data in other caches

Cache snooping: the cache sends a message that invalidates the others caches

26

Bibliography
[bryant] Bryant, Randal E., and David Richard O’Hallaron. “Computer systems: a programmer’s perspective”.

Prentice Hall, 2011.

[patterson2013] Patterson, David A and Hennessy, John L. “Computer organization and design: the

hardware/software interface”. Newnes, 2013.

[patterson2011] Patterson, David A. “Computer architecture: a quantitative approach”. Elsevier, 2011.

27

