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Introduction
• Why this lecture?

– To understand what is happening in the “hardware” part of the
execution stack

– To write programs that are efficient on modern machines

In fact, the compiler generally manages to generate a binary which exploits all
the capacities of the processor. But the compiler sometimes fails and generates
non-optimized code. We must therefore be able to detect the problem, and be
able to write code that the compiler can optimize.

Moore’s Law
• 1965 - 2005

– Moore’s Law (1965): the number of transistors in microprocessors
doubles every two years

– The fineness of the processor engraving decreases
– The clock frequency increases

=⇒ Increased processor performance

• Since 2005

– The fineness of engraving continues to decrease (but less quickly)
– The clock frequency no longer increases due to heat dissipation
– Heat dissipation depends on the frequency, and the number of tran-

sistors
– Multiple computing units per processor
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Evolution of processors performance

Source: https://github.com/karlrupp/microprocessor-trend-data

Sequential processor
• An instruction requires N steps

– Fetch: load instruction from memory
– Decode: identify the instruction
– Execute: execution of the instruction
– Writeback: storage of the result

• Each step is processed by a processor circuit
• Most circuits are not used at every stage → One instruction is executed

every N cycles

The number of steps required to execute an instruction depends on the processor
type (Pentium 4: 31 steps, Intel Haswell: 14-19 steps, ARM9: 5 steps, etc.)
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Instruction pipeline
At each stage, several circuits are used

→ One instruction is executed at each cycle

Figure 1: Execution of instructions on a processor with pipeline

Micro architecture of a pipeline
• Each stage of the pipeline is implemented by a set of logic gates
• Execute step: one subcircuit per type of operation (functional unit)

Figure 2: Micro-architecture of a pipeline

Superscalar processors
• Use of different functional units simultaneously

=⇒ several instructions executed simultaneously!

• Require to load and decode several instructions simultaneously
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Figure 3: Micro-architecture of a superscalar processor

Superscalar processors throughput

Dependence between instructions

Limitations of the superscalar:

• There should be no dependency between statements executed simultane-
ously.

• Example of non-parallelizable instructions

a = b * c;
d = a + 1;

• Degree of parallelism of the instructions: Instruction Level Parallelism
(ILP)

• Instructions executed in parallel must use different functional units
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Branching
• How to fill the pipeline when the instructions contain conditional jumps?

cmp a, 7 ; a > 7 ?
ble L1
mov c, b ; b = c
br L2

L1: mov d, b ; b = d
L2: ...

• In case of a bad choice: the pipeline must be “emptied”

=⇒ waste of time

The cost of a wrong choice when loading a branch depends on pipeline depth:
the longer the pipeline, the longer it takes to empty it (and therefore wait before
executing an instruction). For this reason (among others), the depth of the
pipeline in a processor is limited.

Branch prediction
• The processor implements a prediction algorithm
• General idea:

– For each conditional jump, store the previous results

0x12 loop:
...

0x50 inc eax
0x54 cmpl eax, 10000
0x5A jl loop
0x5C end_loop:

...
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The branch prediction algorithms implemented in modern processors are very
advanced and reach a efficiency greater than 98 % (on the SPEC89 benchmark
suite).

To know the number of good / bad predictions, we can analyze the hardware coun-
ters of the processor. With the PAPI library <http://icl.cs.utk.edu/projects/papi/>,
the PAPI_BR_PRC and PAPI_BR_MSP counters give the number of conditional
jumps correctly and incorrectly predicted.

Linux perf also allows collects this information (among others). For example:

$ perf stat -e branches,branch-misses ./branch_prediction 0
is random is not set
100000000 iterations in 1178.597000 ms
result=199999996

Performance counter stats for './branch_prediction 0':

2447232697 branches
6826229 branch-misses # 0,28% of all branches

1,179914189 seconds time elapsed

1,179784000 seconds user
0,000000000 seconds sys

Vector instructions
• Many applications run in Data Parallelism mode
• Single Instruction, Multiple Data (SIMD): the same operation applied to a

set of data

for(i=0; i<size; i++) {
C[i] = A[i] * B[i];

}
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• Example: image processing, scientific computing

• Using vector instructions (MMX, SSE, AVX, . . . )

• Instructions specific to a processor type

• Process the same operation on multiple data at once

for(i=0; i<size; i+= 8) {
*pC = _mm_mul_ps(*pA, *pB);
pA++; pB++; pC++;

}

Vector instructions were democratized at the end of the years 1990 with the
MMX (Intel) and 3DNow! (AMD) instruction sets that allow to work on 64 bits
(for example to process 2 32-bit operations at once). Since then, each generation
of x86 processors brings new extension to the instruction set: SSE2, SSSE3
(128 bit), SSE4, AVX, AVX2 (256 bit), AVX512 (512 bit). The other types of
processors also provide vector instructions sets (eg NEON [128 bits], Scalable
Vector Extension [SVE] on ARM), or the Vector Extension of RISC-V.

Vector instruction sets are specific to certain processors. The /proc/cpuinfo file
contains (among others) the instructions sets that are available on the processor
of a machine. For example, on an Intel Core i7:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 69
model name : Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz
stepping : 1
microcode : 0x1d
cpu MHz : 1484.683
cache size : 4096 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64
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monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx
f16c rdrand lahf_lm abm ida arat epb pln pts dtherm tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms
invpcid xsaveopt

bugs :
bogomips : 5387.82
clflush size : 64
cache_alignment : 64
address sizes : 39 bits physical, 48 bits virtual
power management:
[...]

The flags field contains the list of all the capabilities of the processor, especially
the available instructions sets: mmx, sse, sse2, ssse3, sse4_1, sse4_2,
avx2.

Vector instruction can be used directly in assembler or by exploiting the intrinsics
provided by compilers. However, because of the number of available instruction
sets and since each new processor generation provides new instructions sets, it is
recommended to leave the compiler optimize the code, for example using the
-O3 option.

Parallel Processing

Hyperthreading / SMT
• Problem with superscalar / vector processors:

– The application must have enough parallelism to exploit
– Other applications may be waiting for the CPU

• Simultaneous Multi-Threading (SMT, or Hyperthreading)

– Modify a superscalar processor to run multiple threads
– Duplicate some circuits
– Share certain circuits (eg FPU) between processing units
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SMT is an inexpensive way to increase the performance of a processor: by
duplicating the “small” circuits (ALU, registers, etc.) and by pooling the “big”
circuits (FPU, prediction of branches, caches), we can execute several threads
simultaneously. The additional cost in terms of manufacturing is light and the
gain in performance can be significant.

Since the dispatcher schedules the instructions of several threads, a branch
miss-prediction becomes less serious since while the pipeline of the thread is
emptied, another thread can be scheduled.

The performance gain when multiple threads are running is not systematic since
some circuits remain shared (by example, the FPU).

Multi-core processors
• Limited scalability of SMT

• dispatcher is shared

• FPU is shared

→ Duplicate all the circuits

It is of course possible to combine multi-core with SMT. Most semiconductor
foundries produce multi-core SMT processors: Intel Core i7 (4 cores x 2 threads),
SPARC T3 Niagara-3 (16 cores x 8 threads), IBM POWER 7 (8 cores x 4
threads).
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Symmetric Multi-Processing (SMP)
• Multiple processors sockets on a motherboard
• The processors share the system bus
• Processors share memory
• Scalability problem: contention when accessing the bus

NUMA architectures
• NUMA nodes connected by a fast network
• Memory consistency between processors
• Privileged access to the local memory bank
• Access possible (with an additional cost) to memory banks located on other

nodes

→ Non-Uniform Memory Architecture

The first NUMA machines (in the 1990s) were simply sets of machines linked by
a proprietary network responsible for managing memory transfers. Since 2003,
some motherboards allow to plug several Opteron processors (AMD) connected
with a HyperTransport link. Intel subsequently developed a similar technology
(Quick Path Interconnect, QPI) to connect its Nehalem processors (released in
2007).
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Memory hierarchy

Memory wall
• Until 2005: increase in CPU performance: 55 % / year
• Since 2005: increase in the number of cores per processor
• Increased memory performance: 10 % / year
• The memory accesses which are now expensive: Memory Wall
• Mechanisms are needed to improve memory performance

Until the 1990s, performance was limited by the performance of the processor.
From the software point of view, developers had to minimize the number of
instructions to be executed in order to achieve the best performance.

As the performance of processors increases, the bottleneck is now the memory.
On the software side, we therefore seek to minimize the number of costly memory
accesses. This pressure on memory is exacerbated by the development of multi-
core processors.

For example, an Intel Core i7 processor can generate up to 2 memory access per
clock cycle. A 18-core processor with hyper-threading (ie 36 threads) running
at 3.1 Ghz 1 can therefore generate 2 × 36 × 3.1 × 109 = 223.2 billion memory
references per second. If we consider access to 64-bit data, this represents 1662
GiB/s (1.623 TiB/s). In addition to these data accesses, the memory access
to the instructions (up to 128 bits per instruction) also have to be taken into
account. We thus arrive to a 3325 GiB/s (therefore 3.248 TiB/s !) maximum
flow.

For comparison, in 2023 a DDR5 RAM DIMM has a maximum throughput of
around 70 GiB/s. It is therefore necessary to set up mechanisms to prevent the
processor from spending all its time waiting for memory.

1Example: an Intel Xeon Gold 6254 released in 2019
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Cache memory
• Memory access (RAM) are very expensive (approx. 60 ns - approx. 180

cycles)
• To speed up memory access, let’s use a fast cache memory:

– L1 cache: very small capacity (typically: 64 KiB), very fast (approx.
4 cycles)

– L2 cache: small capacity (typical: 256 KiB), fast (approx. 10 cycles)
– L3 cache: large capacity (typically: between 4 MiB and 30 MiB), slow

(approx. 40 cycles)
• Very expensive hard disk access (SWAP): approx. 40 ms (150 µs on an

SSD disk)

To visualize the memory hierarchy of a machine, you can use the lstopo tool
provided by the hwloc project.

Figure 4: Source: https://gist.github.com/jboner/2841832

Memory Management Unit (MMU)
• Translates virtual memory addresses into physical addresses
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• Look in the TLB (Translation Lookaside Buffer), then in the page table
• Once the physical address is found, request the data from the cache /

memory

Fully-associative caches

• Cache = array with N entries
• For each reference, search for Tag in the array

– If found (cache hit) and Valid = 1: access to the cache line Data
– Otherwise (cache miss): RAM access

• Problem: need to browse the whole table

→ Mainly used for small caches (ex: TLB)

The size of a cache line depends on the processor (usually between 32 and 128
bytes). You can find this information in /proc/cpuinfo:

$ cat /proc/cpuinfo |grep cache_alignment
cache_alignment : 64
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Direct-mapped caches

• Using the least significant bits of the address to find the index of the entry
in the cache

• Comparison of the Tag (most significant bits) of the address and the entry.

→ Direct access to the cache line

• Warning: risk of collision

• example: 0x12345678 and 0xbff72678

Set-associative caches

• Index to access a set of K cache lines
• Search for the Tag among the addresses of the set

→ K-way associative cache (in French: Cache associatif K-voies)
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Nowadays, caches (L1, L2 and L3) are generally associative to 4 (ARM Cortex A9
for example), 8 (Intel Sandy Bridge), or even 16 (AMD Opteron Magny-Cours)
ways.

Cache consistency

• What if 2 threads access the same cache line?

• Concurrent read: replication in local caches

• Concurrent write: need to invalidate data in other caches

• Cache snooping: the cache sends a message that invalidates the others
caches

To detail this course a little more, we recommend this page web: Modern
microprocessors – A 90 minutes guide! http://www.lighterra.com/papers/mod
ernmicroprocessors/.

For (many) more details, read the books [bryant] and [patterson2013computer]
which describe in detail the architecture of computers. If you are looking for
specific details, read [patterson2011computer].
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