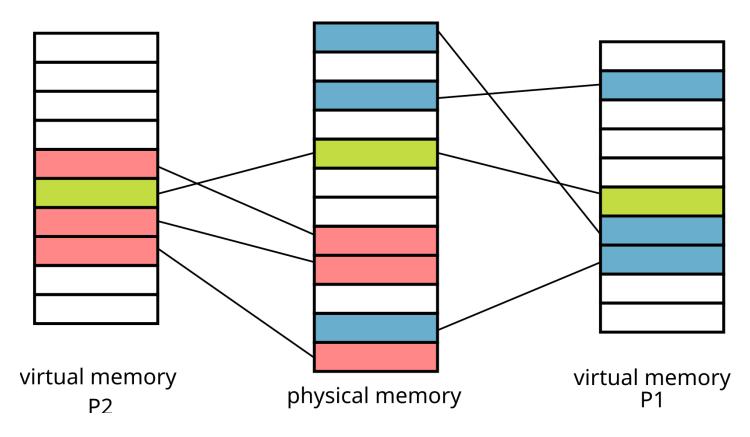
Virtual memory


François Trahay

Introduction

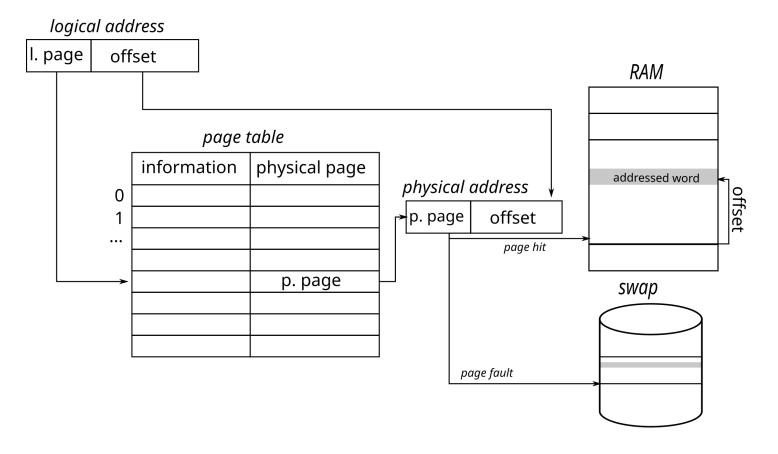
- A process needs to be present in main memory to run
- Central memory divided into two parts
 - The space reserved for the operating system
 - The space allocated to processes
- Memory management concerns the process space
- Memory capacities are increasing, but so are the requirements → Need for multiple memory levels
 - Fast memory (cache)
 - Central memory (RAM)
 - Auxiliary memory (disk)
- Principle of inclusion to limit updates between different levels

Paging

Overview

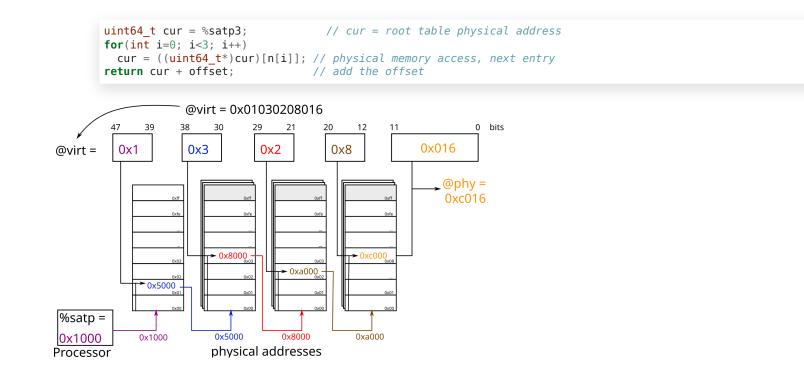
- The address space of each program is split into **pages**
- Physical memory divided into page frames
- Matching between some **pages** and **page frames**

Status of memory pages

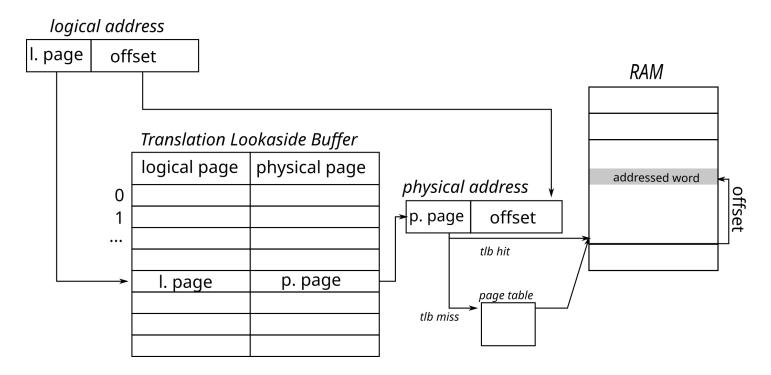

- The memory pages of a process can be
 - In main memory / in RAM (active pages)
 - Non-existent in memory (inactive pages never written)
 - In secondary memory / in the Swap (inactive pages that have already been written)
 - → each process has a contiguous memory space to store its data
- The paging mecanism
 - Translates virtual addresses to/from physical addresses
 - Loads the necessary pages (in case of page faults)
 - (Optionally) move active pages to secondary memory

Logical (or virtual) address

- Address space is divided using the most significant bits
 - Logical address on k bits:
 - Page number: **p** bits
 - Offset in the page: d = (k p) bits
 - $\rightarrow 2^p$ pages and each page contains 2^{k-p} bytes
- Page size
 - Usually 4 KiB (k-p = 12 bits, so p = 52 bits)
 - *Huge pages*: 2 MiB, 1 GiB, 512 GiB, or 256 TiB pages
- Choice = compromise between various opposing criteria
 - Last page is half wasted
 - Small capacity memory : small pages
 - Scalability of the page management system


Page table

- The correspondence between logical address and address physical is done with a page table that contains
 - Page frame number
 - Information bits (presence, permissions, upload timestamp ...)


Implementation of a page table

- On x86_64 or RISC V, a page table = 4-levels tree
 - The physical address of a 512-entry root table is stored in the satp register (cr3 on x86 architectures)
 - Each entry in a table gives the address of the following table
 - virtual address decomposed into 4 indexes (n[0..3]) + 1 offset, then translated using:

Translation Lookaside Buffer (TLB)

- Problem: any access to information requires several memory accesses
- Solution: use associative memories (fast access registers)
- Principle
 - A number of registers are available
 - Logical page number N_p compared to the content of each register
 - if found \rightarrow gives the corresponding frame number N_c
 - Otherwise use the page table

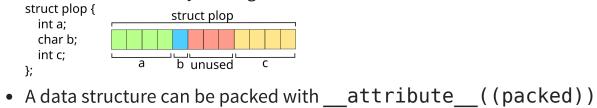
User point of view

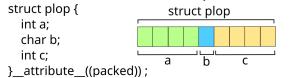
Memory space of a process

0xFFFFFFFFFFFFFFFFFF • Composed of: kernel 0xFFFFFF800000000 N/A kernel space 0x00000800000000 • the different sections of the Stack 1 executed ELF file (.text, .data, Stack 2 etc.) the heap Libs Shared libraries • the stack (one per thread) shared libraries brk Dynamic allocation (malloc, ...) Heap Unitialized variables .bss Initialized variables PC (program counter) .data Instructions .text 0x00000000000000000

Memory mapping

- How to populate the memory space of a process?
 - For each ELF file to be loaded:
 - open the file with **open**
 - each ELF section is *mapped* in memory (with mmap) with the appropriate permissions
 - Results are visible in /proc/<pid>/maps


<pre>\$ cat /proc/self/maps 5572f3023000-5572f3025000 5572f3025000-5572f302a000 5572f302e000-5572f302f000 5572f4266000-5572f4287000 7f33305b4000-7f3330899000 7f33308b9000-7f33308bb000 7f33308bb000-7f3330a03000</pre>	r-xp 00002000 08:0 rw-p 00000000 08:0 rw-p 00000000 00:0 rp 00000000 08:0 rp 00000000 08:0	1 21495815 1 21495815 9 0 1 22283564 1 29885233	/bin/cat /bin/cat /bin/cat [heap] /usr/lib/locale/locale-archive /lib/x86_64-linux-gnu/libc-2.28.so /lib/x86_64-linux-gnu/libc-2.28.so
[] 7f3330ab9000-7f3330aba000 7ffe4190f000-7ffe41930000 7ffe419ca000-7ffe419cd000 7ffe419cd000-7ffe419cf000	rw-p 00000000 00:0 rw-p 00000000 00:0 rp 00000000 00:0	9 0 9 0 9 0	[stack] [vvar] [vdso]

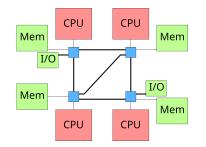

Memory allocation

- void* malloc(size_t size)
 - Returns a pointer to an buffer of size bytes
- void* realloc(void* ptr, size_t size)
 - Changes the size of a buffer previously allocated by malloc
- void* calloc(size_t nmemb, size_t size)
 - Same as malloc, but memory is initialized to 0
- void *aligned_alloc(size_t alignment, size_t size)
 - Same as malloc. The returned address is a multiple of alignment
- void free(void* ptr)
 - Free an allocated buffer

Memory alignment

- Memory alignment depends on the type of data
 - char (1-byte), short (2-bytes), int (4-bytes), ...
- A data structure may be larger than its content

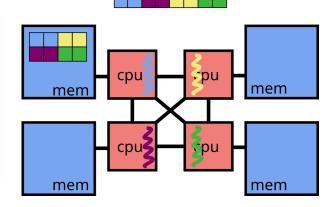
The libc point of view


- How to request memory from the OS
 - void *sbrk(intptr_t increment)
 - increase the heap size by increment bytes
 - void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t
 offset)
 - map a file in memory
 - if flags contains MAP_ANON, does not map any file, but allocates an area filled with 0s

Memory allocation strategies

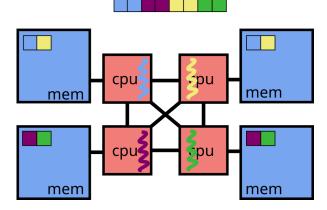
Non-Uniform Memory Access

- Several interconnected memory controllers
- Memory consistency between processors
- Privileged access to the local *memory bank*
- Possible access (with an additional cost) to distant *memory banks*

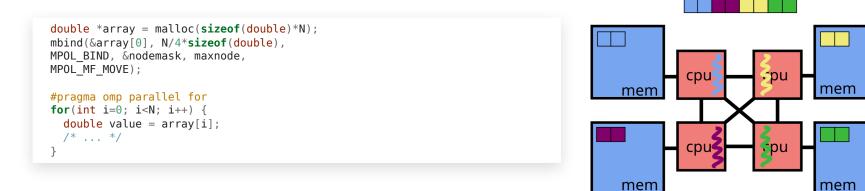

→ *Non-Uniform Memory Access* → On which memory bank to allocate data?

First touch allocation strategy

- Linux default lazy allocation strategy
- Allocation of a memory page on the local node when first accessed
- Assumption: the first thread to use a page will probably will use it in the future


```
double *array = malloc(sizeof(double)*N);
for(int i=0; i<N; i++) {
    array[i] = something(i);
}
#pragma omp parallel for
for(int i=0; i<N; i++) {
    double value = array[i];
    /* ... */
}</pre>
```


Interleaved allocation strategy


- Pages are allocated on the different nodes in a *round-robin* fashion
- Allows load balancing between NUMA nodes
- void *numa_alloc_interleaved(size_t size)

```
double *array =
   numa_alloc_interleaved(sizeof(double)*N);
for(int i=0; i<N; i++) {
   array[i] = something(i);
}
#pragma omp parallel for
for(int i=0; i<N; i++) {
   double value = array[i];
   /* ... */
}</pre>
```


mbind

- long mbind(void *addr, unsigned long len, int mode, const unsigned long *nodemask, unsigned long maxnode, unsigned flags)
- Place a set of memory pages on a (set of) NUMA node → allows manual placement of memory pages

