
System calls

Gaël Thomas

Mathieu Bacou

1



Operating systems
Features

Offers a unified programming interface to the developer

Hides hardware implementation details

Allows you to run multiple processes on a processor

Composition

A library called kernel (noyau in French)

Unified programming interface (open, fork, etc.)

Defined by specifications (System V, POSIX, Win32…)

A set of programs allowing to interact with the core

ls, cp, X, gnome, etc.

2



Operating systems (2/2)

3



Testing the return value of system calls and functions

You must always test the return value of a system call and deal with errors

Prevent the propagation of errors (the discovery of the error can take place much later)

see the fail-fast approach presented in CSC4102

errno: external variable indicating the cause of the last error

The ERRORS section in a function manual describes the possible causes of error.

4



Stack frames

Each function call creates an stack frame

A stack frame contains

local variables

a backup of the modified registers

the arguments of the function, if there are too many to fit in the registers

the return address of the function

5



Content of a stack frame

A stack frame is defined by

the address of the top of the stack (the sp register)

a base address that indicates where the frame begins

on x86, it is kept in the rbp register

on RISC-V, the compiler keeps track of it when generating assembly

Function entry:

decrement sp to make space to save registers, and for local variables

save registers

save ra

Function exit:

restore saved registers

restore ra

increment sp back to its previous value

jump back to ra

6



Buffer overflow

(in French dépassement de tampon)

Writing data outside the space allocated for a buffer

Risk of overwriting other data

Security vulnerability: overwriting data may change the behavior of the application

7



Stack overflow

Using a buffer overflow to change the program execution flow

The return address of a function is on the stack -> possibility of choosing the code to be executed afterwards

8



How to prevent buffer / stack overflow?

Check the boundaries of buffers

done automatically in Java

not done in C / C ++ because it is too expensive

Do not use the unsafe functions (strcpy, gets …)

Use their safe counterpart instead (strncpy, fgets …)

Non-executable stack (enabled by default by Linux)

avoid the execution of an arbitrary code

Stack canaries

A canary (a specific value) is placed on the stack when entering a function

If when exiting the function, the canary has been modified, there has been a stack overflow

Use the -fstack-protector-all option in gcc

Address space layout randomization (ASLR) (enabled by default by Linux)

load the application code to a random address

9



User/system interface

The kernel must protect itself from processes

To avoid bugs

To avoid attacks

For this, the processor offers two operating modes

The system mode: access to all the memory and to all the processor instructions

The user mode: access only to the process memory and to a restricted set of instructions

In particular, no direct access to peripherals and instructions that manage the permissions

associated with the memory

10



User/system interface

Problem: how do you call a kernel function when you can’t access its memory?

11



User/system interface

Solution: special processor instruction to call into system mode

The kernel associates the address of a syscall function to handle ecall

To call a kernel function

1. The process gives the function number to call via a parameter

2. The process executes the ecall instruction

3. The processor changes mode and executes the ecall handler

4. the handler uses the parameter to select the kernel function to be executed

12



Bibliography
[riasanovsky] Riasanovsky, Nick. “Understanding RISC-V calling convention.” EECS Department, University of

California, Berkeley, Tech. Rep.[Online]. Available:

[aleph1996] Aleph, One. “Smashing the stack for fun and profit” Phrack #49, 1996. [Online]. Available:

https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf

https://phrack.org/issues/49/1

13

https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf
https://phrack.org/issues/49/1

