System calls

Gaél Thomas

Mathieu Bacou

Operating systems

e Features

= Offers a unified programming interface to the developer
= Hides hardware implementation details
= Allows you to run multiple processes on a processor

e Composition
= Alibrary called kernel (noyau in French)

o Unified programming interface (open, fork, etc.)
o Defined by specifications (System V, POSIX, Win32...)

= Aset of programs allowing to interact with the core

o ls, cp, X, gnome, etc.

user space

kernel space

application

libraries

Operating systems (2/2)

main

store_result

fprintf
\ o
Q
\J
write
__ .'*__________________
write
ipc scheduler ||filesystem | |network
bufter cache
mgrrwgorgment sd_setup_read_write_cmnd —
9 blo¢k | char | netw
device driver

___ ---.‘r------------------

hardware

CPU Mem| |Disk

high level API

syscall wrappers

Testing the return value of system calls and functions

You must always test the return value of a system call and deal with errors

Prevent the propagation of errors (the discovery of the error can take place much later)
see the fail-fast approach presented in CSC4102

errno: external variable indicating the cause of the last error

The ERRORS section in a function manual describes the possible causes of error.

Stack frames

e Each function call creates an stack frame
e Astack frame contains

local variables

a backup of the modified registers

the arguments of the function, if there are too many to fit in the registers
the return address of the function

Content of a stack frame

o Astack frame is defined by

= the address of the top of the stack (the Sp register)
= a base address that indicates where the frame begins

o on x86, it is kept in the rbp register
o on RISC-V, the compiler keeps track of it when generating assembly

e Function entry:

= decrement Sp to make space to save registers, and for local variables
= save registers
= save ra

e Function exit:

restore saved registers

restore ra

increment sp back to its previous value
jump back to ra

Buffer overflow

(in French dépassement de tampon)

Writing data outside the space allocated for a buffer

Risk of overwriting other data

Security vulnerability: overwriting data may change the behavior of the application

Stack overflow

e Using a buffer overflow to change the program execution flow
e The return address of a function is on the stack -> possibility of choosing the code to be executed afterwards

How to prevent buffer / stack overflow?
Check the boundaries of buffers

= done automatically in Java
= notdoneinC/C++becauseitistoo expensive

Do not use the unsafe functions (strcpy, gets...)

= Use their safe counterpartinstead (strncpy, fgets...)
Non-executable stack (enabled by default by Linux)

= avoid the execution of an arbitrary code
Stack canaries

= Acanary (a specific value) is placed on the stack when entering a function
= |f when exiting the function, the canary has been modified, there has been a stack overflow
= Usethe -fstack-protector-alloptioningcc

Address space layout randomization (ASLR) (enabled by default by Linux)

= |oad the application code to a random address

User/system interface

e The kernel must protect itself from processes

= To avoid bugs
= To avoid attacks

e For this, the processor offers two operating modes

= The system mode: access to all the memory and to all the processor instructions
= The user mode: access only to the process memory and to a restricted set of instructions

o In particular, no direct access to peripherals and instructions that manage the permissions
associated with the memory

User/system interface

» Problem: how do you call a kernel function when you can’t access its memory?

the process g()

. Impossible !l!
calls function]
read in the kernel Forbidden memory
access

code f()
and g() :

accessible |non-accessible
memory memory

réad() code

the process f()

calls g() within the process
OK

User/system interface

e Solution: special processor instruction to call into system mode

» The kernel associates the address of a syscall function to handle ecall
= To call a kernel function

1. The process gives the function number to call via a parameter

2. The process executes the ecal L instruction

3. The processor changes mode and executes the ecall handler

4. the handler uses the parameter to select the kernel function to be executed

[
parameter = 4 (read) I
| handle
I

ecall ecall

memory memory

|
. | .
accessible I non-accessible
|
I

Bibliography

[riasanovsky] Riasanovsky, Nick. “Understanding RISC-V calling convention.” EECS Department, University of
California, Berkeley, Tech. Rep.[Online]. Available:
https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf

[aleph1996] Aleph, One. “Smashing the stack for fun and profit” Phrack #49, 1996. [Online]. Available:
https://phrack.org/issues/49/1

https://inst.eecs.berkeley.edu/~cs61c/resources/RISCV_Calling_Convention.pdf
https://phrack.org/issues/49/1

