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Introduction
Objectives of this lecture:

How are synchronization primitives implemented?
How to do without locks?
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Atomic operations
Motivation

By default, an instruction modifying a variable is non-atomic
example : x++ gives :

register = load(x)

register ++

x = store (register)

→ Problem if the variable is modified by a other thread simultaneously
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Can’t we just use volatile ?
Tells the compiler that the variable can change from one access to another:

modification by another thread
modification by a signal handler

But volatile does not ensure atomicity
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Atomic operations
C11 provides a set of atomic operations, including

atomic_flag_test_and_set

atomic_compare_exchange_strong

atomic_fetch_add

atomic_thread_fence
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Test and set
_Bool atomic_flag_test_and_set(volatile atomic_flag* obj)

sets a flag and returns its previous value
Performs atomically:

Implementing a lock:

int atomic_flag_test_and_set(int* flag) {

  int old = *flag;

  *flag = 1;

  return old;

}

void lock(int* lock) {

  while(atomic_flag_test_and_set(lock) == 1) ;

}
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Compare And Swap (CAS)
_Bool atomic_compare_exchange_strong(volatile A* obj,     C* expected, C 

desired);

compares *obj and *expected
if equal, copy desired into *obj and return true
else, copy the value of *obj into *expected and return false

Performs atomically:

bool CAS(int* obj, int* expected, int desired) {

  if(*obj != *expected) {

    *expected = *obj;

    return false;

  } else {

    *obj = desired;

    return true;

  }

}
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Fetch and Add
C atomic_fetch_add( volatile A* obj, M arg );

replace obj with arg+obj
return the old value of obj

Performs atomically:

int fetch_and_add(int* obj, int value) {

  int old = *obj;

  *obj = old+value;

  return old;

}
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Memory Fence (Barrière mémoire)
C atomic_thread_fence( memory_order order );

performs a memory synchronization
ensures that all past memory operations are visible by all threads according to the memory model chosen
(see )C11 memory model
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Synchronization primitives
Properties to consider when choosing a synchronization primitive

Reactivity: time spent between the release of a lock and the unblocking of a thread waiting for this lock
Contention: memory traffic generated by threads waiting for a lock
Equity and risk of famine: if several threads are waiting for a lock, do they all have the same probability of
acquire it? Are some threads likely to wait indefinitely?
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Busy-waiting synchronization
int pthread_spin_lock(pthread_spinlock_t *lock);

tests the value of the lock until it becomes free, then acquires the lock
int pthread_spin_unlock(pthread_spinlock_t *lock);

Benefits
Simple to implement (with test_and_set)
Reactivity

Disadvantages
Consumes CPU while waiting
Consumes memory bandwidth while waiting
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Futex
Fast Userspace Mutex

System call allowing to build synchronization mechanisms in userland
Allows waiting without monopolizing the CPU
A futex is made up of:

a value
a waiting list

Available operations (among others)
WAIT(int *addr, int value)

while(*addr == value) { sleep();}: add the current thread to the waiting list
WAKE(int *addr, int value, int num)

*addr = value: wake up num threads waiting on addr
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Implementing a mutex using a futex
mutex: an integer with two possible values: 1 (unlocked), or 0 (locked)
mutex_lock(m):

Test and unset the mutex
if mutex is 0, call FUTEX_WAIT

mutex_unlock(m):
Test and set the mutex
call FUTEX_WAKE to wake up a thread from the waiting list
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Implementing a monitor using a futex
condition: a counter

struct cond {

  int cpt;

};

void cond_wait(cond_t *c, pthread_mutex_t *m) {

  int value = atomic_load(&c->value);

  pthread_mutex_unlock(m);

  futex(&c->value, FUTEX_WAIT, value);

  pthread_mutex_lock(m);

}

void cond_signal(cond_t *c) {

  atomic_fetch_add(&c->value, 1);

  futex(&c->value, FUTEX_WAKE, 0);

}

14



Using synchronization
Classic problems:

deadlocks
lock granularity
scalability

Deadlock
Situation such that at least two processes are each waiting for a non-shareable resource already allocated to the
other
Necessary and sufficient conditions (Coffman, 1971 (Coffman, Elphick, and Shoshani 1971))

1. Resources accessed under mutual exclusion (non-shareable resources)
2. Waiting processes (processes keep resources that are acquired)
3. Non-preemption of resources
4. Circular chain of blocked processes

Strategies:
Prevention: acquisition of mutexes in the same order
Deadlock detection and resolution (eg. with pthread_mutex_timedlock)
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Lock granularity
Coarse grain locking

A lock protects a large portion of the program
Advantage: easy to implement
Disadvantage: reduces parallelism

Fine grain locking
Each lock protects a small portion of the program
Advantage: possibility of using various resources in parallel
Disadvantages:

Complex to implement without bug (eg. deadlocks, memory corruption)
Overhead (locking comes at a cost)
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Scalability of a parallel system
Scalability = ability to reduce execution time when adding processing units
Sequential parts of a program reduce the scalability of a program (Amdhal’s law (Amdahl 1967))
In a parallel program, waiting for a lock introduced sequentiality -> Locks can interfere with scalability
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