
Synchronization
François Trahay

1

Introduction
Objectives of this lecture:

How are synchronization primitives implemented?
How to do without locks?

2

Atomic operations
Motivation

By default, an instruction modifying a variable is non-atomic
example : x++ gives :

register = load(x)

register ++

x = store (register)

→ Problem if the variable is modified by a other thread simultaneously

3

Can’t we just use volatile ?
Tells the compiler that the variable can change from one access to another:

modification by another thread
modification by a signal handler

But volatile does not ensure atomicity

4

Atomic operations
C11 provides a set of atomic operations, including

atomic_flag_test_and_set

atomic_compare_exchange_strong

atomic_fetch_add

atomic_thread_fence

5

Test and set
_Bool atomic_flag_test_and_set(volatile atomic_flag* obj)

sets a flag and returns its previous value
Performs atomically:

Implementing a lock:

int atomic_flag_test_and_set(int* flag) {

 int old = *flag;

 *flag = 1;

 return old;

}

void lock(int* lock) {

 while(atomic_flag_test_and_set(lock) == 1) ;

}

6

Compare And Swap (CAS)
_Bool atomic_compare_exchange_strong(volatile A* obj, C* expected, C

desired);

compares *obj and *expected
if equal, copy desired into *obj and return true
else, copy the value of *obj into *expected and return false

Performs atomically:

bool CAS(int* obj, int* expected, int desired) {

 if(*obj != *expected) {

 *expected = *obj;

 return false;

 } else {

 *obj = desired;

 return true;

 }

}

7

Fetch and Add
C atomic_fetch_add(volatile A* obj, M arg);

replace obj with arg+obj
return the old value of obj

Performs atomically:

int fetch_and_add(int* obj, int value) {

 int old = *obj;

 *obj = old+value;

 return old;

}

8

Memory Fence (Barrière mémoire)
C atomic_thread_fence(memory_order order);

performs a memory synchronization
ensures that all past memory operations are visible by all threads according to the memory model chosen
(see)C11 memory model

9

https://en.cppreference.com/w/c/atomic/memory_order

Synchronization primitives
Properties to consider when choosing a synchronization primitive

Reactivity: time spent between the release of a lock and the unblocking of a thread waiting for this lock
Contention: memory traffic generated by threads waiting for a lock
Equity and risk of famine: if several threads are waiting for a lock, do they all have the same probability of
acquire it? Are some threads likely to wait indefinitely?

10

Busy-waiting synchronization
int pthread_spin_lock(pthread_spinlock_t *lock);

tests the value of the lock until it becomes free, then acquires the lock
int pthread_spin_unlock(pthread_spinlock_t *lock);

Benefits
Simple to implement (with test_and_set)
Reactivity

Disadvantages
Consumes CPU while waiting
Consumes memory bandwidth while waiting

11

Futex
Fast Userspace Mutex

System call allowing to build synchronization mechanisms in userland
Allows waiting without monopolizing the CPU
A futex is made up of:

a value
a waiting list

Available operations (among others)
WAIT(int *addr, int value)

while(*addr == value) { sleep();}: add the current thread to the waiting list
WAKE(int *addr, int value, int num)

*addr = value: wake up num threads waiting on addr

12

Implementing a mutex using a futex
mutex: an integer with two possible values: 1 (unlocked), or 0 (locked)
mutex_lock(m):

Test and unset the mutex
if mutex is 0, call FUTEX_WAIT

mutex_unlock(m):
Test and set the mutex
call FUTEX_WAKE to wake up a thread from the waiting list

13

Implementing a monitor using a futex
condition: a counter

struct cond {

 int cpt;

};

void cond_wait(cond_t *c, pthread_mutex_t *m) {

 int value = atomic_load(&c->value);

 pthread_mutex_unlock(m);

 futex(&c->value, FUTEX_WAIT, value);

 pthread_mutex_lock(m);

}

void cond_signal(cond_t *c) {

 atomic_fetch_add(&c->value, 1);

 futex(&c->value, FUTEX_WAKE, 0);

}

14

Using synchronization
Classic problems:

deadlocks
lock granularity
scalability

Deadlock
Situation such that at least two processes are each waiting for a non-shareable resource already allocated to the
other
Necessary and sufficient conditions (Coffman, 1971 (Coffman, Elphick, and Shoshani 1971))

1. Resources accessed under mutual exclusion (non-shareable resources)
2. Waiting processes (processes keep resources that are acquired)
3. Non-preemption of resources
4. Circular chain of blocked processes

Strategies:
Prevention: acquisition of mutexes in the same order
Deadlock detection and resolution (eg. with pthread_mutex_timedlock)

15

Lock granularity
Coarse grain locking

A lock protects a large portion of the program
Advantage: easy to implement
Disadvantage: reduces parallelism

Fine grain locking
Each lock protects a small portion of the program
Advantage: possibility of using various resources in parallel
Disadvantages:

Complex to implement without bug (eg. deadlocks, memory corruption)
Overhead (locking comes at a cost)

16

Scalability of a parallel system
Scalability = ability to reduce execution time when adding processing units
Sequential parts of a program reduce the scalability of a program (Amdhal’s law (Amdahl 1967))
In a parallel program, waiting for a lock introduced sequentiality -> Locks can interfere with scalability

17

Bibliography
Amdahl, Gene M. 1967. “Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities.” In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, 483–85. ACM.
Coffman, Edward G, Melanie Elphick, and Arie Shoshani. 1971. “System Deadlocks.” ACM Computing Surveys

(CSUR) 3 (2): 67–78.

18

