
File systems
Gaël Thomas

1

Device and device driver

2

Device and device driver
Device = hardware component other than CPU and memory
Device driver = software allowing access to a device

1 data structure giving the status of the device
1 input / output function allowing access to the device
The driver is usually found in the kernel

3

Devices in UNIX
A device is identified by a number called dev

Most significant bits (major): driver number
For example: 8 = ssd hard drive driver

Least significant bits (minor): device number
For example: 0 = disk 1, 1 = disk 1 / part 1, 2 = disk 1 / part 2

The kernel contains a table which associates a driver number with the driver (access function + status)

4

2 types of peripherals
“character” devices

Read / write byte by byte
Generally access via MMIO or input / output bus

→ blocks the CPU during the I/O operation
Keyboard, printer, sound card …

“block” devices
Read / write by data blocks (typically 512 bytes)
The device is therefore seen as an array of blocks
Usually access via DMA

→ does not block the CPU during the I / O operation
Hard disk, DVD player …

5

Block devices in xv6
A single block device driver in xv6

Manages virtio hard disks (emulated by Qemu)
Function virtio_disk_rw() in virtio.c

virtio_disk_rw() takes two parameters:
a boolean, write, to tell if it is a read or a write
a buf (buf.h) structure

buf.dev/blockno: access to block blockno from disk dev
buf.data: data read or written

If write == 0, the output of virtio_disk_rw, data = data read
If write == 1, the input of virtio_disk_rw, data = data to write

6

Principle of the virtio_disk_rw algorithm
virtio_disk_rw mainly performs the following actions:

Setup the DMA data transfer:
From disk to memory on a read
From memory to disk on a write

Sleep the process with the sleep function (see lecture #4)
→ switch to another ready process

Once the transfer is complete
1. The virtio disk generates an interrupt
2. The interrupt is handled by the virtio_disk_intr function
3. virtio_disk_intr calls wakeup to wake up the sleeping process

7

The I / O cache
Disk access is very slow compared to memory access

Hard disk drive: several milliseconds
SSD disk: x10, hundreds of microseconds
NVMe disk: x100, microseconds
Memory: x100, dozens of nanoseconds

I/O cache improves the performance of block type devices
Keeps frequently or recently used blocks in memory
Managed by the operating system kernel

8

Principle of an I/O cache
The system manages a set of buffers in memory
To read a block (read operation)

If the block is not yet in the cache
1. Remove an unused buffer from the cache
2. Copy the contents of the disk block to this buffer

Otherwise, simply return the buffer associated with the block
To modify a block (write operation)

1. Read the block (call the read operation)
2. Modify the contents of the buffer in memory
3. Mark buffer as modified (written to disk later)

9

The xv6 buffer cache
buffer cache = xv6 I/O cache (bio.c)

Made up of a finite set of buf structures
Each buf structure is associated with a block of a disk

A buf can be valid if its block’s data has been read, invalid otherwise
Each buf has a reference counter to avoid eviction while still in use

10

How the buffer cache works: buffer management (1/3)
The buf structures form a circular double linked list, the head is the most recently used block
struct buf* bget(uint dev, uint blkno): return a locked buffer associated with (dev, blkno)

If there is already an buffer associated with (dev,blkno)
Increment the reference counter of the buffer
Lock the buffer
Return the buffer

Otherwise
Search for a buffer with counter == 0
Associate the buffer with (dev, blkno)
And then, same as above

11

How the buffer cache works: read buffer (2/3)
struct buf* bread(uint dev, uint blkno)

Goal: return a locked buffer for this block in the valid state
1. Call bget() to find a buffer for this block
2. If the buffer is invalid, call virtio_disk_rw()

void bwrite(struct buf* b)

Call virtio_disk_rw() to write the buffer data to the disk

12

How the buffer cache works: write buffer (3/3)
void brelse(struct buf* b)

Release the lock associated with b
Decreases the reference counter
Move the buffer to the head of the list (most recently used) if it is unused

13

The log

14

Operation versus writing to disk
A write operation of a process often requires several block writes

File creation requires:
Allocation of a new file
Adding the name to a directory

Adding data to a file requires:
Writing new blocks to disk
Updating the file size

Deleting a file requires:
Deleting the data blocks from the file
Deleting the name from the directory

…

15

Consistency issues
The system can crash anytime
→ Inconsistency if it stops in the middle of an operation

A name in a directory references a non-existent file
Data added to a file but size not updated
…

Operations must be propagated in the order in which they were performed
→ Inconsistency if propagation in random order

Adding a file then deleting ⟹ the file does not exist at the end
Deleting a file then adding ⟹ the file exists at the end
Similarly, adding data then truncating (size should be 0)
…

16

Bad solutions
No cache when writing (directly propagate write operations)

Very inefficient because each write becomes very (very!) slow
Recovery in the case of a crash

Recovering a file system is slow
examples: FAT32 on Windows or ext2 on Linux
Recovering is not always possible
→ a crash makes the filesystem unusable!

17

First idea: transactions
A transaction is a set of writes that is

Either fully executed
Or not executed at all

Principle of implementation
An operation (coherent set of writes) == a transaction
The writes of a transaction are first written to disk in a “pending” area
Once the operation is complete, the “pending” area is marked as valid (the transaction is complete)
Regularly (or in the event of a crash), validated writes in the pending zone are propagated to the file system

18

Second idea: log
To ensure that the entries are propagated in order in which they were executed, the pending zone is structured
like a log

Each entry is added at the end of the log
The validated transactions of the pending zone are propagated to the file system in the order of the log
(from the start of the log to the end)

19

Third idea: parallel log
Problems: Multiple processes may perform transactions in parallel

Parallel transaction writes are interleaved in the log
→ How do you know which ones are validated?
Classic solution

If several transactions in parallel, all the operations are validated when the last one is completed
Advantage: easy to implement (count of the number of operations in parallel)
Disadvantage: risk of never validating if new operations continue to arrive

20

Log structure
The system technically manages two logs

One in memory called memory log
Contains only the list of modified block numbers
The content of the modified blocks is in the buffer cache

One on disk called disk log
Contains the list of modified block numbers and a copy of the blocks
Note: the block is propagated from the log to the filesystem later

→ The system can therefore manage up to 3 copies of a block
One on disk in the file system called disk block
One on disk in the log called disk log block
One in memory in the buffer cache called cached block

21

Log algorithm principle
Steps to modify block number n

1. load the disk block in the buffer cache
2. modification of the buffer (i.e. cached block)
3. add n to the list of modified blocks in the memory log

At the end of an operation, steps to validate the transaction
1. copy modified cached blocks to disk log
2. copy the modified block list to disk log
3. mark the transaction as validated

Later, to propagate the transaction
1. copy disk log blocks to file system
2. reset disk log and memory log

22

Using the log
Three functions in the log management interface (log.c)

begin_op() : start a transaction
end_op() : validate a transaction
log_write(struct buf* b) : add b to the transaction

To perform a logged operation, instead of calling directly bwrite (), we have to execute:

begin_op();

b = bread(...);

// Modify data of b

...

log_write(b2);

...

end_op();

23

Implementation in xv6 (1/3)
void begin_op() : start a transaction

If log writing to disk in progress, wait
If the log is full, wait
Increments the number of pending operations (log.outstanding)

void end_op() : complete a transaction
Decrement the number of operations in progress, and if equal to 0:

Write memory log + cached blocks in disk log (write_log())
Mark committed disk log transaction (write_head())
Propagate writes from disk log to the filesystem (install_trans())
Delete logs in memory and on disk (write_head())

24

Implementation in xv6 (2/3)
void log_write(struct buf* b)

Goal: put the block associated with b in the log
Find an entry for the block in the log

If already in the log: absorb the log entry (i.e., do nothing: the block is already logged to be written)
If new to the log:

1. Add block number to the memory log
2. Increase the reference counter of the buffer b to prevent it from leaving the buffer cache

25

Implementation in xv6 (3/3)
After a crash, call install_trans() which propagates the writes from disk log to file system

In the worst case, writes that had already been performed are replayed
But at the end of the replay, the filesystem is in a consistent state

26

Partitions and file systems

27

File system
File system: defines the structure for storing files (often for a block type device)

UFS : Unix Files System (xv6, BSD)
ext : extended file system (Linux - ext4 nowadays)
NTFS : New Technology File System (Windows)
APFS : APple File System (MacOS)
FAT : File Allocation Table (Windows)
BTRFS : B-TRee File System (Linux)
and many others !

28

Principle of a file system
File = consistent set of data that can be read or written
Filesystem = associate names and files

Example : /etc/passwd → root:*:0:0:System Administrator...
Usually a special symbol is used as a separator for directories

/ in UNIX systems, ∖ in Windows systems

29

Partitions
A disk is often made up of several partitions

Partition = continuous area that contains a file system
Typical structure of a disk

First block: partition table
For example: Master Boot Record

Blocks 2 to x: kernel loader
In charge of loading the kernel of one of the partitions
For example: LILO, GRUB

Blocks x to y: partition 1
Blocks y to z: partition 2
etc…

30

Disk image
A file itself can contain the data of a complete disc

Called a disk image or a virtual disk
Typically used in virtualization
For example: xv6.img is the disk image used with the qemu emulator to start xv6

31

UFS/xv6 file system

32

Overall file system structure
Five large contiguous zones (in fs.h)

The super block describes the other areas
The journal contains the disk logs
The dinode table contains the metadata of the files (size, type like ordinary or directory …)
The table of free blocks indicates the free blocks
The data blocks area contains the data of the files

33

Dinode
A file on disk consists of:

metadata called a dinode (fixed size, see fs.h)
file type (ordinary, directory, device)
file size
the list of the file data blocks
an indirection block (see following slides)
device number if device file
number of hard links to the file (reminder: a hard link is a name in a directory)

data blocks
these are the blocks that contain the content of the file

34

Data blocks of a file
A dinode directly lists the numbers of the first 12 blocks

the dinode.addrs [0] block contains bytes 0 to 511 of the file
…
the dinode.addrs [i] block contains the bytes i * 512 to i * 512 + 511

The indirection block contains the following block numbers
the indirection block number ind is given in dinode.addrs [12]
the ind [0] block contains bytes 12 * 512 to 12 * 512 + 511

Note: since a block is 512 bytes and a block number is coded out of 4 characters, a file has a maximum size of 12 +
512/4 blocks.

35

Adding a block to a file
To add a new block to a dinode dino (function bmap () in fs.h)

1. Find a free block number in the table of free blocks \ (function balloc() in fs.h)
2. Mark the occupied block (put its bit 1 in the table)
3. Add the block number to the list of data blocks in dino

this addition may require to allocate an indirection block

36

Directories
A directory is a file of type T_DIR
Contains an array associating names and numbers of dinodes

inum: inode number
name: file name

Inode 1 is necessarily a directory: it is the root directory of the filesystem
Note: dinode.nlink gives the number of times a dinode is referenced from a directory
⟹ file deleted when nlink equals to 0.

37

From path to inode
To find a dinode number from the path /e0/../en (see namex() in fs.c)

cur = 1

For i in [0 .. n]

 Look for the association [inum, name] in the data blocks of

 the cur dinode such that name is ei

 cur = inum

38

File creation and deletion
To create the file f in the d directory (function create() in sysfile.c)

1. Find a free inum dinode by finding an inode whose type is 0 in the dinode array (ialloc () in fs.h)
2. Add the association [inum, f] to d

To delete the file f from the d directory (sys_unlink() function in sysfile.c)
1. Delete the entry corresponding to f in d
2. Decrement nlink from f and if nlink equals 0
3. Delete data blocks from file f
4. Remove the inode f (setting its type to 0)

39

xv6 I/O stack

40

Inode
inode = memory cache of a dinode

Enter the cache at open()
Can be evicted from cache from close()
Contains the fields of the dinode
+ fields to know which dinode the inode corresponds to

Device number and dinode number
+ fields required when the dinode is used

A lock to manage concurrent access
A counter giving the number of processes using the inode to know when the inode can be evicted from
the cache

Inode table = table which contains the inodes

41

Main functions of inodes (1/3)
struct inode* iget(int dev, int inum)

Corresponds to open(): returns an inode associated with [dev, inum]
Increments the inode usage counter (non-evictable)
Do not lock the inode and do not read the inode from disk (optimization to avoid disc playback when
creates a file)

inode.valid indicates whether the inode has been read from disk
void ilock(struct inode* ip)

Acquires a lock on the inode
Read inode from disk if not already read

void iunlock(struct inode* ip)

Release the lock on the inode

42

Main functions of inodes (2/3)
void itrunc(struct inode* ip)

Free all the blocks in the file (size 0)
void iupdate(struct inode* ip)

Copy the inode to the disk dinode (technically, via the I/O cache)

43

Main functions of inodes (3/3)
void iput(struct inode* ip)

Corresponds to close ()
Decreases the inode usage counter
If cpt drops to 0, the inode can be evicted from the cache and

If nlink is 0 (the inode is no longer referenced by a directory)
Delete data blocks from inode (itrunc)
Mark the inode as free (type = 0)

Note: if you delete a file from a directory (unlink()) while the file is still in use (open) by a process, the inode is
not deleted: it will be when last close() when the reference counter drops to 0.

44

Open files
Multiple processes can open the same file

Each process has independent read / write permissions
Each process has a read cursor, which is independent of that of the other processes

A file structure opened by open () contains:
A pointer to an inode
Access permissions
A reading cursor

45

File descriptors
Each process has an ofile table of open files

A descriptor d is an index in this table
proc[i].ofile[d] points to an open file
proc[i].ofile[d].ip points to inode

Good to know
During a fork(), the parent and the child share the open files
So proc[parent].ofile[d] == proc[child].ofile[d]
And so, if the father reads, the child read cursor changes
Useful for setting up pipes

46

What you must remember
A device driver is just a function (virtio_disk_rw() for example)
Reads and writes are logged

Ensures file system consistency in the event of a crash
The kernel has an I/O cache

Is in memory, managed by the kernel
Allows to speed up I/O

A file system separates
The naming (directory) of the files (dinodes + data blocks)
The metadata (dinode) of the data blocks

A file descriptor is an index in the ofile table
proc->ofile[i] is an open file that references an inode

47

