
Input/output
François Trahay

1

2

Buffered / non-buffered IO
Buffered I/O

Write operations are grouped in a buffer which is written to disc from time to time
When reading, a data block is loaded from disk to buffer

→ a buffered I/O ≠ an operation on the disk
eg. fopen, fread, fscanf, fwrite, fprintf, etc.
Data stream identified by an opaque pointer FILE*

Unbuffered I/O
an unbuffered I/O = an operation on the disk †
eg. open, read, write, etc.
Open file identified by a file descriptor of type int

3

I/O primitives

4

File open / close
int open(const char *path, int flags, mode_t mode)

returns f_id
flags can take one of the following values:

O_RDONLY: read only
O_WRONLY: write only
O_RDWR: read and write

Additional flags:
O_APPEND: append data (write at the end of the file)
O_TRUNC: truncate (empty) the file when opening it
O_CREAT: creation if the file does not exist. The permissions are (mode & ∼umask)
O_SYNC: open file in synchronous write mode
O_NONBLOCK (ot O_NDELAY): open and subsequent operations performed on the descriptor will be
non-blocking.

int close(int desc)

5

Reading on a file descriptor
ssize_t read(int fd, void *buf, size_t count)

returns the number of bytes successfully read
When read returns, the buf zone contains the read data;
In the case of a file, the number of bytes read may not be be equal to count:

We reached the end of the file
We did a non-blocking read and the data was exclusively locked

6

Writing on a file descriptor
ssize_t write(int fd, const void *buf, size_t count)

return the number of bytes written
In the case of a file, the return value (without error) of the write operation means that:

Bytes were written to kernel caches unless O_SYNC was specify at file open;
Bytes have been written to disk if O_SYNC was specified.

In the case of a file, a number of bytes written that is different from count means an error (e.g. No space left
on device)

7

File descriptor duplication
Mechanism mainly used to perform redirection of the three standard I/O files.
int dup(int old_fd)

return a new file descriptor new_fd
associates the smallest available file descriptor of the calling process the same entry in the open files table
as the descriptor old_fd

int dup2(int old_fd, int new_fd)

force the file descriptor new_fd to become a synonym of the old_fd descriptor. If the descriptor new_fd
is not available, the system first closes close(new_fd)

8

I/O and concurrence

9

Locking a file

Locks are attached to an inode. So locking a file affects all file descriptors (and therefore all open files)
corresponding to this inode
A lock is the property of a process: this process is the only one authorized to modify or remove it
Locks have a scope of [integer1:integer2] or [integer:∞]
Locks have a type:

F_RDLCK: allows concurrent read access
F_WRLCK: exclusive access

struct flock {

 short l_type;

 short l_whence;

 off_t l_start;

 off_t l_len;

};

int fcntl(int fd, F_SETLK, struct flock*lock);

10

Offset manipulation
off_t lseek(int fd, off_t unOffset, int origine)

return the new offset
allows to handle the offset of the file

Warning ! Race condition if several threads manipulate the file
Solutions:

Handling of the file in mutual exclusion
Using pread or pwrite instead of lseek + read or lseek + write

11

Improving the I / O performance

12

Giving advices to the kernel
int posix_fadvise(int fd, off_t offset, off_t len, int advice)

examples of advice: POSIX_FADV_SEQUENTIAL, POSIX_FADV_RANDOM, POSIX_FADV_WILLNEED
return value = 0 if OK, error number otherwise
allows you to tell the kernel how the programm will access a file, which allows the kernel to optimize
accordingly

13

Asynchronous I/O

Starts an asynchronous read / write operation
Returns immediately

Waits for the end of an asynchronous operation

Tests the end of an asynchronous operation

int aio_read(struct aiocb *aiocbp);

int aio_write(struct aiocb *aiocbp);

int aio_suspend(const struct aiocb * const aiocb_list[],

 int nitems,

 const struct timespec *timeout);

int aio_error(const struct aiocb *aiocbp);

14

mmap

“map” a file in memory
memory accesses to the buffer are transformed into disk operations

“unmap” a buffer

void *mmap(void *addr,

 size_t length,

 int prot,

 int flags,

 int fd,

 off_t offset);

int munmap(void *addr, size_t length);

15

