Input/output

Francois Trahay

Contents
Reminder on files: . . . . . . . ... 1
Buffered / non-buffered 10 2

I/0 primitives 3
Fileopen /close . . . .. .. ... . .. 3
Reading on a file descriptor . . . . . .. ... oL oo 4
Writing on a file descriptor . . . . . . ... Lo 4
File descriptor duplication . . . . . . . ... ... ... ... ... 7

I/0 and concurrence 7
Lockingafile . . . . . .. ... 7
Offset manipulation . . . . ... .. .. ... oL 10

Improving the I / O performance 11
Giving advices to the kernel . . . . . . . ... .. ... 0. 11
Asynchronous I/O . . . . . . ..o Lo 11
00800 T 1 12

In this lecture, we mainly talk about files, as this is the easiest example of 1/O
to manipulable. However, note that the content of the first 3 sections apply to
I/0 other than files (eg sockets).

Reminder on files:

o A file is a series of contiguous bytes stored in a medium (for example, a
disk) under a name (the “name of the file”).

o We distinguish several types of the files:

— text: containing bytes that can be displayed on the screen. This type
of files consists of lines identified by the character end of line (on Unix,
ASCII code character 10 while on Windows, ASCII code character
10 followed by a character of ASCII code 13);



— binary: containing bytes that cannot be displayed on the screen.

On Unix, the commands hexdump -C filename, bless filename or xxd
filename show the exact content of a file. Use them to

1. compare the contents of helloWorldUnix.c and helloWorldWindows.c

2. see that the file default_names_fichierIssuDuTP10DuModuleCSC4103.txt

is not quite a text file (and, see also how are the accented characters
stored in a file)

When you “open” a file, the operating system provides a notion of current
position (sometimes called offset in the rest of this course) for reading or
writing.

— This current position determines which byte in the file will be read-
/written during the next I/O operation.

— This offset advances each time a read or write operation is performed.

— The operating system provides the user with primitives to explicitly
change this position (without reading or writing bytes).

The “end of a file” corresponds to the location behind the last byte of the
file. When a program reaches the end of file, it cannot read bytes anymore.
On the other hand, the program can write bytes (depending on the mode
in which the file was opened).

o There are 3 ways to access a file:

— Sequential: the bytes are read one after the others from the beginning
of the file.

— Direct: you can set the offset without reading bytes before offset.

— Indexed sequential: the file contains records, each record being iden-
tified by a key (unique or no). Using the key, you can position the
offset at the start of a recording. You can also read the recordings in
the order defined by their key.

The Linux system and the C library provide sequential and direct access modes.
For an indexed sequential access mode, other libraries are required (Unix NDBM,
GDBM, Oracle Berkeley DB, ...).

Buffered / non-buffered 10

o Buffered I/O

— Write operations are grouped in a buffer which is written to disc from
time to time
— When reading, a data block is loaded from disk to buffer



— a buffered I/O # an operation on the disk

— eg. fopen, fread, fscanf, fwrite, fprintf, etc.
— Data stream identified by an opaque pointer FILE*

o Unbuffered I/0

— an unbuffered I/O = an operation on the disk f
— eg. open, read, write, etc.
— Open file identified by a file descriptor of type int

T To be exact, an “unbuffered” I/O generates a system call. The OS can then
decide to cache the data or no.

I/O primitives

File open / close

o int open(const char *path, int flags, mode_t mode)
— returns f id
— flags can take one of the following values:
* O_RDONLY: read only
* O_WRONLY: write only
* 0_RDWR: read and write
— Additional flags:
x O_APPEND: append data (write at the end of the file)
* O0_TRUNC: truncate (empty) the file when opening it
x 0_CREAT: creation if the file does not exist. The permissions are
(mode & ~ umask)
* 0_SYNC: open file in synchronous write mode
* O0_NONBLOCK (ot O_NDELAY): open and subsequent operations per-
formed on the descriptor will be non-blocking.
e int close(int desc)

About the 0_SYNC option in open:

o To improve performance, by default, during a write operation, the operating
system does not physically write the bytes on disk (they are stored in a
kernel cache, waiting to be writen to disk)

o Therefore, in the event of a sudden stop of the machine (example: power

outage):

— data thought to have been written to disk may to be lost because
they were in fact in memory;
— there is also a risk of inconsistency in the data on the disk.



¢ Solutions to synchronize file data in memory with the disc:

— implicit synchronization (i.e. on each write): adding the 0_SYNC option
when opening the file;

— explicit synchronization (i.e. the application decides) via the int
fsync(int £d) primitive

Note that we can also create a file using the creat primitive:

e int creat(const char *path, mode_t mode) : return value = f id
— which is equivalent to the following call to open:
— open(path, O_WRONLY|O_CREAT|O_TRUNC, mode).

Reading on a file descriptor

e ssize_t read(int fd, void *buf, size_t count)
— returns the number of bytes successfully read
— When read returns, the buf zone contains the read data;
— In the case of a file, the number of bytes read may not be be equal to
count:
* We reached the end of the file
* We did a non-blocking read and the data was exclusively locked

In the case where the read function is used on a descriptor other than a file
(e.g. a pipe, or a socket), the fact that the number of bytes read may not equal
count may have other meanings:

« for a communication pipe (see the Inter-process communication lecture),
the correspondent has closed its end of the pipe.

o for a socket (see course NET4103), the network protocol uses data packets
smaller than the size that is requested.

Writing on a file descriptor

e ssize_t write(int fd, const void *buf, size_t count)
— return the number of bytes written
— In the case of a file, the return value (without error) of the write
operation means that:
* Bytes were written to kernel caches unless 0_SYNC was specify at
file open;
* Bytes have been written to disk if 0_SYNC was specified.
— In the case of a file, a number of bytes written that is different from
count means an error (e.g. No space left on device)



Writing to disk is atomic: if two processes P; and P, simultaneously write to
the same file in the same location, when the two processes have finished their
writing, we will find:

e either the data written by P,
o either the data written by Ps,
e but never a mix of the data written by P; and Ps.

Note that when the file is opened with the option O_APPEND, if P; and P, write
simultaneously (at the end of the file, because of 0_APPEND), when the two
processes will have finished their writing, we will find at the end of file:

o either the data written by P; followed by the one written by P,
e or the data written by P, followed by the one written by P;.

No writing is therefore lost! Attention, this concurrent write at the end of
file is not equivalent to two processes simultaneously performing the following
operations:

lseek(fd,0,SEEK_END); /* move the cursor to the end of file */
write(fd,data,taille);

In fact, in the latter case, one of the written data may by overwritten by the
other.

The copy.c file on the next page illustrates the use of open, read, write and
close.

[ A K KK KKK )

/* copy.c */

VAT I I II I T T4
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <stdio.h>

#define USAGE "USAGE: copy src dest\n"
#define WRITE_ERROR "write error (no space left on device 7)\n"

int source, dest;
int buf;
int nb_read, nb_written;

int main(int argc, char *argv[]) {
if (arge !'= 3) {
write (STDERR_FILENQO, USAGE, strlen(USAGE));
return EXIT_FAILURE;
}



source = open(argv[1], O_RDONLY);
if (source < 0) {
perror(argv([i]);
return EXIT_FAILURE;
}
dest = open(argv([2],
0_WRONLY|O_CREAT|O_TRUNC,
S_IRWXU|S_IRWXG|S_IRWXO0);
if (dest < 0) {
perror (argv[2]) ;
return EXIT_FAILURE;
}
while ((nb_read = read(source, (void*)&buf, sizeof(buf))) > 0) {
nb_written = write(dest, (void#)&buf, nb_read);
if (nb_written <= 0) {
if (nb_written == 0) {
write (STDERR_FILENO, WRITE_ERROR, strlen(WRITE_ERROR));
}
else {
perror ("write");
}
return EXIT_FAILURE;
}
}
if (nb_read < 0) {
perror("read");
return EXIT_FAILURE;
}
if (close(source) < 0) {
perror(argv([i]);
return EXIT_FAILURE;
}
if (close(dest) < 0) {
perror (argv[2]);
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}

This operation of copying the contents of one file to another descriptor is an opera-
tion frequently performed in web servers. Indeed, these servers must in particular
send the content of files to client who have requested them. This is why the linux
system offers the sendfile primitive (ssize_t sendfile (int out_fd, int
in_fd, off_t * offset, size_t count)). It reads count bytes of in_fd and
write them to out_fd (which must match an socket). sendfile is more more
efficient than the combination read / write.



The fallocate function is the Linux specific version of the portable function
posix_fallocate.

File descriptor duplication

¢ Mechanism mainly used to perform redirection of the three standard I/0O
files.
e int dup(int old_fd)
— return a new file descriptor new_fd
— associates the smallest available file descriptor of the calling process
the same entry in the open files table as the descriptor old_fd
e int dup2(int old_fd, int new_£fd)
— force the file descriptor new_fd to become a synonym of the old_fd
descriptor. If the descriptor new_f£d is not available, the system first
closes close(new_fd)

I/O and concurrence

Locking a file

struct flock {
short 1_type;
short 1_whence;
off t 1_start;
off t 1 _len;

};

int fcntl(int fd, F_SETLK, struct flock*lock);

o Locks are attached to an inode. So locking a file affects all file descriptors
(and therefore all open files) corresponding to this inode

e A lock is the property of a process: this process is the only one authorized
to modify or remove it

o Locks have a scope of [integer] : integer2] or [integer : oo
e Locks have a type:

— F_RDLCK: allows concurrent read access
— F_WRLCK: exclusive access

The exclusive-lock.c file illustrates exclusive file locking:



S KKK KKKKKK )

/* exclusive_lock.c */
VAT I I I I 24

#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main(){
int fd;
struct flock lock;

fd = open("/tmp/ficTest",0_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
if (£d < 0) {

perror ("open") ;

exit (EXIT_FAILURE);
}

/* Exclusive lock on the 15th byte */
lock.1l_type = F_WRLCK;

lock.1l_whence = SEEK_SET;
lock.1l_start = 15;

lock.1_len = 1;

/* Because of the F_SETLKW parameter, we get stuck on the fcntl if */
/* the lock cannot be acquired */
printf ("attempt to acquire an exclusive lock by process %d...\n",
getpid());

if (fcntl(fd, F_SETLKW, &lock) < 0){

perror ("Acquiring lock");

exit (EXIT_FAILURE) ;
}
printf("... Exclusive lock acquired by process %d\n", getpid());

/* Here we could do the processing that needed to be protected */
/* by the lock */
sleep(10);

/* Release the lock */

printf ("Releasing the lock by process %d...\n", getpid());
lock.1l_type = F_UNLCK;

lock.1l_whence = SEEK_SET;

lock.1l_start = 15;

lock.1_len = 1;

if (fcntl(fd, F_SETLK, &lock) < 0){



perror ("Releasing lock");
exit (EXIT_FAILURE) ;

}

printf("...0K\n");

return EXIT_SUCCESS;
}

The shared-lock.c file illustrates the shared locking:

JRKKKK KKK KKK KKKK )
/* shared_lock.c */
JRKKF KKK AR KKK KKKK )
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main(){
int fd;
struct flock lock;

fd = open("/tmp/ficTest",0_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO);
if (fd < 0) {

perror ("open") ;

exit (EXIT_FAILURE);
}

/* Shared lock on the 15th byte */
lock.1_type = F_RDLCK;
lock.1l_whence = SEEK_SET;
lock.1l_start = 15;
lock.1l_len = 1;

/* Because of the F_SETLKW parameter, we get stuck on the fentl if */
/* the lock cannot be acquired */
printf ("attempt to acquire a shared lock by process %d...\n",
getpid());

if (fcntl(fd, F_SETLKW, &lock) < 0){

perror ("Acquiring lock");

exit (EXIT_FAILURE) ;
}

printf("... shared lock acquired by process %d\n", getpid());

/* Here we could do the processing that needed to be protected */
/* by the lock */



sleep(10);

/* Release the lock */
printf ("Releasing the lock by process %d...\n", getpid());
lock.l_type = F_UNLCK;
lock.1l_whence = SEEK_SET;
lock.1l_start = 15;
lock.1_len = 1;
if (fcntl(fd, F_SETLK, &lock) < 0){
perror ("Releasing lock");
exit (EXIT_FAILURE);
}
printf("...0K\n");

return EXIT_SUCCESS;

o If we run exclusive-lock first, running exclusive-lock or shared-lock
wait before locking.

e If we run shared-lock first, another shared-lock can set the (shared)
lock. On the other hand, a exclusive-lock must wait to be able to lock.

o Note that exclusive_lock may suffer starvation:

— start a 1st shared lock.

— start exclusive_lock: it wait

— start a 2nd shared lock. The 1st shared lock ends. But as the 2nd
shared_ lock is running, exclusive_lock is still waiting.

— start a 3rd shared_lock. The 2nd shared lock ends. But as the 3rd
shared_ lock is running, exclusive_lock is still waiting.

— we see that as long as shared_lock starts while the previous
shared_ lock has not finished running, exclusive lock must wait:
exclusive_lock may face starvation.

To prevent this starvation, we must add a mutual exclusion.

Offset manipulation
e off_t lseek(int fd, off_t unOffset, int origine)
— return the new offset
— allows to handle the offset of the file
e Warning ! Race condition if several threads manipulate the file

¢ Solutions:

10



— Handling of the file in mutual exclusion
— Using pread or pwrite instead of 1lseek + read or 1seek + write

Improving the I / O performance

Giving advices to the kernel

e int posix_fadvise(int fd, off_t offset, off_t len, int
advice)

— examples of advice: POSIX_FADV_SEQUENTIAL, POSIX_FADV_RANDOM,
POSIX_FADV_WILLNEED

— return value = 0 if OK, error number otherwise

— allows you to tell the kernel how the programm will access a file,
which allows the kernel to optimize accordingly

Since January 2011, we know that this function is used in Firefox to reduce startup
time by 40 % to 50 % by loading more efficiently GUI libraries xul.d11 and
mozjs.d1ll (more information here <https://bugzilla.mozilla.org/show_ bug.cgi?id=627591>).

Asynchronous 1I/0

int aio_read(struct aiocb *aiocbp);
int aio_write(struct aiocb *aiocbp);

o Starts an asynchronous read / write operation
e Returns immediately

int aio_suspend(const struct aiocb * const aiocb_list[],
int nitems,
const struct timespec *timeout);

o Waits for the end of an asynchronous operation
int aio_error(const struct aiocb *aiocbp);
o Tests the end of an asynchronous operation

For more information on asynchronous I/0, refer to the documentation (man 7
aio).

The current implementation of AIO Posix is provided in user-land by libc and
can cause scalability issues. Another solution is to use the Asynchronous I/0O
interface provided by the Linux kernel (see the system calls io_submit, io_setup,
etc.), or the libaio library which provides an overlay to Linux system calls.

11



mmap

void *mmap(void *addr,
size_t length,
int prot,
int flags,
int fd,
off_t offset);

e “map” a file in memory
e« memory accesses to the buffer are transformed into disk operations

int munmap(void *addr, size_t length);
e “unmap” a buffer

To ensure that the memory accesses have been passed on to the disk, you can
use the msync function.

12



	Reminder on files:
	Buffered / non-buffered IO
	I/O primitives
	File open / close
	Reading on a file descriptor
	Writing on a file descriptor
	File descriptor duplication

	I/O and concurrence
	Locking a file
	Offset manipulation

	Improving the I / O performance
	Giving advices to the kernel
	Asynchronous I/O
	mmap


