Threads

Francois Trahay

TELECOM <@, INSTITUT
'0 POLYTECHNIQUE
Y&V DE PARIS

54 i |

Execution context of a process

e Context: execution context + kernel context
e Address space: code, data and stack

0x0000008000000000
Process context: Stack fm)a::l:t7 Functions context
q b= Oxcef
Execution context I ﬁbag% SP (stack pointer)
Data registers {a0=147, a1=0x66, ...}
Stack pointer {sp=0x7fffffffd678}
Program counter {pc=0x7fffff7e8f0do i o Shared libraries
0] libfoo.so
Kernel context 9
Virt. Mem. structures 2
Descriptor table 5
brk pointer 4 4 brk
IM Dynamic allocation
Heap (malloc, ...)
.bss Unitialized variables
.data Initialized variables
ot ‘,‘,w”m?;m /mtggs(program counter)
. - 0x0000000000000000

Duplicating a process
e Fork creates a new process and duplicates

= Context: execution context + kernel context
= except for the a0 register (where the return value is stored)

o On x86_64 architecture, this is the register rax

= Address space: code, data and stack

Process 1 context:

Execution context Stack o Stack o
Data registers(0hes, ..} . R -
Stack pointer {sp 678) | B, | SP | o, |
Program counter {rip=0x7ffff7e8f0do} =L

Kernel context " r:

Virt. Mem. structures H lbcso g s
Descriptor table s Lib Oy :
< | LIDS ; < | Libs =
brk pointer o libfoo.s0 lnl) libfoo.so
g v}
o ©
[=X o
:
Process 2 context: % b
3 3

Execution conte: A brk A
Data registerg {a0=0, a1=0}§66, ...}
f . § | I
Stack pointer (Spwseflids7s) Hello worldh0 W[tHello worldho

Program counter {rip=0x7ffff7esfodo} Heap Heap
Kernel context bss bss

Virt. Mem. structures

Descriptor table .data .data

brk pointer o] — PC————— R
i " o
text e text -

e Execution flow ! = Resources

Execution flows

= Execution flow (or thread) : execution context + stack

= Resources: code, data, kernel context

hread
Stack mEZJ f
= Oxcef
e LR

SP (stack pointer)

Execution context
Data registers {a0=147, a1=0x66, ...}
Stack pointer {sp=0x7fffffffd678}
Program counter {pc=0x7fffff7e8f0d0

Kernel context

Virt. Mem. structures
Descriptor table

brk pointer

userspace

0x0000008000000000

Libs

libc.so

libfoo.so

Shared libraries

brk

Heap

I[Hello world\0 N
Dynamic allocation

(malloc, ...)

.bss

Unitialized variables

.data

Initialized variables

text

EEE

PC (program counter)
Instructions

0x0000000000000000

Multithreaded process

Several execution flows
Shared resources

Thread 1
0x0000008000000000
Stack 1
- Thread 2
(stack pointer) — PE
Stack 2 Stack 1 56t |
mult:
. n=12812
Execution context 1 SP (stack pointen)
Data registers {a0=147, a1=0x66, ...} Execution context 2
Stack pointer {sp=0x7fffffffd678} : fiocso Shared libraries :
Program counter {pc=0x7fffff7e8f0d0 o [HPS Lt - DL RS D S -0]
1 Stack pointer {sp=0x7fffffffd6b0
Q Program counter {pc=0x7ffff7e17238
—
3 brk
>
Hello worldno o "
| Dynamicallocation
Kernel context Heap
Virt. Mem. structures .bss Unitialized variables
Descriptor table .data Initalized variables
N TR PC (program counter)
brk pointer ER
P I "0x0600000000000000

Creating a Pthread

int pthread create(pthread t *thread,
const pthread attr t *attr,
void *(*start routine) (void *),
void *arg);

attr (in): attributes of the thread to be created

start routine (in): function to be executed once the thread is created
arg (in): parameter to pass to the function

thread (out): identifier of the created thread

Other Pthread functions

int pthread exit(void* retval);

e Terminates the current thread with the return value retval

int pthread join(pthread t tid, void **retval);

e Wait for the tid thread to terminate and get its return value

Sharing data

e The memory space is shared between the threads, in particular

= global variables
= static local variables
= the kernel context (file descriptors, streams, signals, etc.)

e Some other resources are not shared

= |ocal variables

Thread-safe source code

» thread-safe source code: gives a correct result when executed simultaneously by multiple threads:

= No call to non thread-safe code
= Protect access to shared data

Reentrant source code

e Reentrant source code: code whose result does not depend on a previous state

= Do not maintain a persistent state between calls
= example of a non-reentrant function: f read depends on the position of the stream cursor

TLS - Thread-Local Storage

e Global variable (or static local) specific to each thread

= Example:errno
= Declaring a TLS variable

o inCll: Thread local int variable = 0;

Synchronization

e Guarantee data consistency
= Simultaneous access to a shared read / write variable
o X++ is not atomic (consisting of Load, update, store)
= Simultaneous access to a set of shared variables
o example: afunctionswap(a, b){ tmp=a; a=b; b=tmp; }
e Several synchronization mechanisms exist

= Mutex
= Atomic Instructions
= Conditions, semaphores, etc. (see Lecture #3)

Mutex

Type: pthread _mutex_t
Initialisation:

= pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
= int pthread mutex init(ptread mutex t *m, const pthread mutexattr t
*attr);

Usage:

= int pthread mutex lock(pthread mutex t *mutex));
= int pthread mutex trylock(pthread mutex t *mutex);
= int pthread mutex unlock(pthread mutex t *mutex);

Terminaison:

= int pthread mutex destroy(pthread mutex t *mutex);

Atomic operations

e Operation executed atomically
e C11 defines a set of functions that perform atomic operations

= C atomic fetch add(volatile A *object, M operand);
= Bool atomic flag test and set(volatile atomic flag *object);

e C11 defines atomic types

= operations on these types are atomic
= declaration: Atomic int var; or Atomic(int) var;

