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Execution context of a process

e Context: execution context + kernel context
e Address space: code, data and stack
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Duplicating a process
e Fork creates a new process and duplicates

= Context: execution context + kernel context
= except for the a0 register (where the return value is stored)

o On x86_64 architecture, this is the register rax

= Address space: code, data and stack
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e Execution flow ! = Resources

Execution flows

= Execution flow (or thread) : execution context + stack

= Resources: code, data, kernel context
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Multithreaded process

Several execution flows
Shared resources
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Creating a Pthread

int pthread create(pthread t *thread,
const pthread attr t *attr,
void *(*start routine) (void *),
void *arg);

attr (in): attributes of the thread to be created

start routine (in): function to be executed once the thread is created
arg (in): parameter to pass to the function

thread (out): identifier of the created thread



Other Pthread functions

int pthread exit(void* retval);

e Terminates the current thread with the return value retval

int pthread join(pthread t tid, void **retval);

e Wait for the tid thread to terminate and get its return value



Sharing data

e The memory space is shared between the threads, in particular

= global variables
= static local variables
= the kernel context (file descriptors, streams, signals, etc.)

e Some other resources are not shared

= |ocal variables



Thread-safe source code

» thread-safe source code: gives a correct result when executed simultaneously by multiple threads:

= No call to non thread-safe code
= Protect access to shared data



Reentrant source code

e Reentrant source code: code whose result does not depend on a previous state

= Do not maintain a persistent state between calls
= example of a non-reentrant function: f read depends on the position of the stream cursor



TLS - Thread-Local Storage

e Global variable (or static local) specific to each thread

= Example:errno
= Declaring a TLS variable

o inCll: Thread local int variable = 0;



Synchronization

e Guarantee data consistency
= Simultaneous access to a shared read / write variable
o X++ is not atomic (consisting of Load, update, store)
= Simultaneous access to a set of shared variables
o example: afunctionswap(a, b){ tmp=a; a=b; b=tmp; }
e Several synchronization mechanisms exist

= Mutex
= Atomic Instructions
= Conditions, semaphores, etc. (see Lecture #3)



Mutex

Type: pthread _mutex_t
Initialisation:

= pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
= int pthread mutex init(ptread mutex t *m, const pthread mutexattr t
*attr);

Usage:

= int pthread mutex lock(pthread mutex t *mutex));
= int pthread mutex trylock(pthread mutex t *mutex);
= int pthread mutex unlock(pthread mutex t *mutex);

Terminaison:

= int pthread mutex destroy(pthread mutex t *mutex);



Atomic operations

e Operation executed atomically
e C11 defines a set of functions that perform atomic operations

= C atomic fetch add(volatile A *object, M operand);
= Bool atomic flag test and set(volatile atomic flag *object);

e C11 defines atomic types

= operations on these types are atomic
= declaration: Atomic int var; or Atomic(int) var;



