
Threads
François Trahay

1

Execution context of a process
Context: execution context + kernel context
Address space: code, data and stack

2

Duplicating a process
Fork creates a new process and duplicates

Context: execution context + kernel context
except for the a0 register (where the return value is stored)

On x86_64 architecture, this is the register rax
Address space: code, data and stack

3

Execution flows
Execution flow ! = Resources

Execution flow (or thread) : execution context + stack
Resources: code, data, kernel context

4

Multithreaded process
Several execution flows
Shared resources

5

Creating a Pthread
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *

(*start_routine) (void *), void *arg);

attr (in): attributes of the thread to be created
start_routine (in): function to be executed once the thread is created
arg (in): parameter to pass to the function
thread (out): identifier of the created thread

6

Other Pthread functions
int pthread_exit(void* retval);

Terminates the current thread with the return value retval
int pthread_join(pthread_t tid, void **retval);

Wait for the tid thread to terminate and get its return value —

7

Sharing data
The memory space is shared between the threads, in particular

global variables
static local variables
the kernel context (file descriptors, streams, signals, etc.)

Some other resources are not shared
local variables

8

Thread-safe source code
thread-safe source code: gives a correct result when executed simultaneously by multiple threads:

No call to non thread-safe code
Protect access to shared data

9

Reentrant source code
Reentrant source code: code whose result does not depend on a previous state

Do not maintain a persistent state between calls
example of a non-reentrant function: fread depends on the position of the stream cursor

10

TLS – Thread-Local Storage
Global variable (or static local) specific to each thread

Example: errno
Declaring a TLS variable

in C11: _Thread_local int variable = 0;

11

Synchronization
Guarantee data consistency

Simultaneous access to a shared read / write variable
x++ is not atomic (consisting of load, update, store)

Simultaneous access to a set of shared variables
example: a function swap(a, b){ tmp=a; a=b; b=tmp; }

Several synchronization mechanisms exist
Mutex
Atomic Instructions
Conditions, semaphores, etc. (see Lecture~#3)

12

Mutex
Type: pthread_mutex_t
Initialisation:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(ptread_mutex_t *m, const pthread_mutexattr_t

*attr);

Usage:
int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Terminaison:
int pthread_mutex_destroy(pthread_mutex_t *mutex);

13

Atomic operations
Operation executed atomically
C11 defines a set of functions that perform atomic operations

C atomic_fetch_add(volatile A *object, M operand);

_Bool atomic_flag_test_and_set(volatile atomic_flag *object);

C11 defines atomic types
operations on these types are atomic
declaration: _Atomic int var; or _Atomic(int) var;

14

